10 research outputs found

    Evidence for directional selection at a novel major histocompatibility class I marker in wild common frogs (Rana temporaria) exposed to a viral pathogen (Ranavirus).

    Get PDF
    (c) 2009 Teacher et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Whilst the Major Histocompatibility Complex (MHC) is well characterized in the anuran Xenopus, this region has not previously been studied in another popular model species, the common frog (Rana temporaria). Nor, to date, have there been any studies of MHC in wild amphibian host-pathogen systems. We characterise an MHC class I locus in the common frog, and present primers to amplify both the whole region, and specifically the antigen binding region. As no more than two expressed haplotypes were found in over 400 clones from 66 individuals, it is likely that there is a single class I locus in this species. This finding is consistent with the single class I locus in Xenopus, but contrasts with the multiple loci identified in axolotls, providing evidence that the diversification of MHC class I into multiple loci likely occurred after the Caudata/Anura divergence (approximately 350 million years ago) but before the Ranidae/Pipidae divergence (approximately 230 mya). We use this locus to compare wild populations of common frogs that have been infected with a viral pathogen (Ranavirus) with those that have no history of infection. We demonstrate that certain MHC supertypes are associated with infection status (even after accounting for shared ancestry), and that the diseased populations have more similar supertype frequencies (lower F(ST)) than the uninfected. These patterns were not seen in a suite of putatively neutral microsatellite loci. We interpret this pattern at the MHC locus to indicate that the disease has imposed selection for particular haplotypes, and hence that common frogs may be adapting to the presence of Ranavirus, which currently kills tens of thousands of amphibians in the UK each year

    Data from: Oceanographic connectivity and environmental correlates of genetic structuring in Atlantic herring in the Baltic Sea

    No full text
    Marine fish often show little genetic structuring in neutral marker genes, and Atlantic herring (Clupea harengus) in the Baltic Sea are no exception; historically, very low levels of population differentiation (FST ≈ 0.002) have been found, despite a high degree of interpopulation environmental heterogeneity in salinity and temperature. Recent exome sequencing and SNP studies have however shown that many loci are under selection in this system. Here, we combined population genetic analyses of a large number of transcriptome-derived microsatellite markers with oceanographic modelling to investigate genetic differentiation and connectivity in Atlantic herring at a relatively fine scale within the Baltic Sea. We found evidence for weak but robust and significant genetic structuring (FST = 0.008) explainable by oceanographic connectivity. Genetic differentiation was also associated with site differences in temperature and salinity, with the result driven by the locus Her14 which appears to be under directional selection (FST = 0.08). The results show that Baltic herring are genetically structured within the Baltic Sea, and highlight the role of oceanography and environmental factors in explaining this structuring. The results also have implications for the management of herring fisheries, the most economically important fishery in the Baltic Sea, suggesting that the current fisheries management units may be in need of revision
    corecore