249 research outputs found

    Bacillus spp. Probiotic Strains as a Potential Tool for Limiting the Use of Antibiotics, and Improving the Growth and Health of Pigs and Chickens

    Get PDF
    The pressure to increasingly optimize the breeding of livestock monogastric animals resulted in antimicrobials often being misused in an attempt to improve growth performance and counteract diseases in these animals, leading to an increase in the problem of antibiotic resistance. To tackle this problem, the use of probiotics, also known as direct in-feed microbials (DFM), seems to be one of the most promising strategies. Among probiotics, the interest in Bacillus strains has been intensively increased in recent decades in pigs and poultry. The aim of the present review was to evaluate the effectiveness of Bacillus strains as probiotics and as a potential strategy for reducing the misuse of antibiotics in monogastric animals. Thus, the potential modes of action, and the effects on the performance and health of pigs (weaning pigs, lactation and gestation sows) and broilers are discussed. These searches yielded 131 articles (published before January 2021). The present review showed that Bacillus strains could favor growth in terms of the average daily gain (ADG) of post-weaning piglets and broilers, and reduce the incidence of post-weaning diarrhea in pigs by 30% and mortality in broilers by 6–8%. The benefits of Bacillus strains on these parameters showed results comparable to the benefit obtained by the use of antibiotics. Furthermore, the use of Bacillus strains gives promising results in enhancing the local adaptative immune response and in reducing the oxidative stress of broilers. Fewer data were available regarding the effect on sows. Discordant effects have been reported regarding the effect on body weight (BW) and feed intake while a number of studies have supported the hypothesis that feeding probiotics to sows could benefit their reproductive performance, namely the BW and ADG of the litters. Taken all the above-mentioned facts together, this review confirmed the effectiveness of Bacillus strains as probiotics in young pigs and broilers, favoring their health and contributing to a reduction in the misuse of direct in-feed antibiotics. The continuous development and research regarding probiotics will support a decrease in the misuse of antibiotics in livestock production in order to endorse a more sustainable rearing system in the near future

    Evaluation of carcass quality, body and pulmonary lesions detected at the abattoir in heavy pigs subjected or not to tail docking

    Get PDF
    BackgroundNowadays, body and tail lesions and respiratory disease are some of the greatest problems affecting the health and welfare of pigs. The aim of the study was to measure the prevalence of pleurisy, bronchopneumonia (enzootic pneumonia like lesions) and lesions on tail and body of heavy pigs subjected or not to tail docking through the inspection in Italian abattoirs. Additionally, the effect of tail docking and season was investigated on carcass quality (weight, % of lean meat, and Protected Designation of Origin (PDO) classification). For this purpose, a total 17.256 carcasses belonging to 171 batches from 103 farms were inspected in an Italian abattoir between 2019 and 2022. Enzootic pneumonia (EP) like lesions were scored according to the Madec and Derrien method, while pleurisy was scored using the Italian Slaughterhouse pleuritic evaluation system (SPES). For the tail and body, the lesions were scored according to Welfare Quality. The lesion score index (LSI) was calculated for each area. Data were analysed using a general linear model (GLM) including tail caudectomy, season and distance of the farm from the abattoir.ResultsThe warm season increased the percentage of lesions in carcasses in all parts of the body observed (P < 0.0001). The presence of undocked tail increased the LSI of the tail (P < 0.0001). The percentage of limbs lesions with score 2 and limbs LSI increase with increasing duration of transport (coef. = 0.003, P < 0.001; coef. = 0.008, P < 0.001; respectively). The hot carcass weight and the percentage of carcasses included in the PDO were higher in batches with docked tails (P = 0.027; P < 0.001, respectively), while the percentage of lean meat was higher in batches with undocked tails (P < 0.001). There was a negative correlation between the percentage of carcasses included in PDO and the LSI of tail (r = - 0.422; P < 0.001).ConclusionsIn conclusion, the presence of the undocked tail and the warm season can be considered risk factors for the prevalence of tail lesions, while long transport can increase limb lesions. Furthermore, the carcass weight and meat quality were negatively influenced by tail lesions

    Cryogenic System for the Origins Space Telescope: Cooling a Large Space Telescope to 4K with Today's Technology

    Get PDF
    The Origins Space Telescope (OST) concept is one of four NASA Science Mission Directorate, Astrophysics Division, observatory concepts being studied for launch in the mid 2030's. OST's wavelength coverage will be from the midinfrared to the sub-millimeter, 6-600 microns. To enable observations at the zodiacal background limit the telescope must be cooled to about 4 K. Combined with the telescope size (currently the primary is 9 m in diameter) this appears to be a daunting task. However, simple calculations and thermal modeling have shown the cooling power required is met with several currently developed cryocoolers. Further, the telescope thermal architecture is greatly simplified, allowing simpler models, more thermal margin, and higher confidence in the final performance values than previous cold observatories. We will describe design principles to simplify modeling and verification. We will argue that the OST architecture and design principles lower its integration and test time and reduce its ultimate cost

    Effect of an Escherichia coli F4/F18 bivalent oral live vaccine on gut health and performance of healthy weaned pigs

    Get PDF
    Oral live vaccines stimulate host immunity, but they could also affect intestinal mucosa development and gut microbiota of piglets during the postweaning. The aim of this study was to determine the effect of an oral vaccine against Escherichia coli F4 and F18 (Coliprotec F4/F18®), on gut functionality and integrity, growth performance and health status of postweaning piglets. A total of 96 weaned piglets (23.30 ± 1.85 days of age; 7334 ± 1039 g BW) were divided into two groups (16 replicates/group; three piglets/replicate) as follows: (1) Control (CO), fed a standard diet (prestarter up to 14 days, then starter feed); (2) Treated (TRT): as CO but vaccinated with Coliprotec F4/F18® at weaning (day 0). Piglets were weighed at day 0 and weekly until day 35. Individual faecal score was recorded daily. Piglets were sacrificed at days 10 (1/3 of total) and 35 (2/3). Samples of jejunum mucosa and of cecum content were collected for morphometric, immunohistochemistry analysis and for microbiota profile analysis, respectively. Data were fitted using a linear model including treatment, class of starting BW as fixed factors and litter as random factor. From days 0 to 7, piglets from the TRT group tended to have a higher average daily gain (+22.6%, P = 0.08) and average daily feed intake compared to the CO group (+13.2%, P = 0.022). Gain to feed ratio was lower in the TRT group from days 14 to 35 (-6.6%, P = 0.011). From days 7 to 14, the TRT group had a higher diarrhoea index (-199%, P < 0.001). Crypt depth was higher in the CO group (+10.9%, P = 0.04) at day 10, but not at day 35. Jejunal expression of Claudin-4 (probability of having a score = 3) was higher in the TRT group at day 10 (CO = 1.50% vs TRT = 2.69%, P < 0.0001) and day 35 (CO = 1.29% vs TRT = 1.92%, P = 0.012). Oral vaccine affected beta diversity at day 10 (P = 0.040; R2 = 0.05) and increased the abundance of specific taxa and genera in the cecum at day 10, including Prevotella (lg2FC = 23.2, FDR < 0.001). The results showed how an Escherichia coli-based vaccine supplied to weaned pigs can promote gut health by controlling symptoms of the postweaning perturbation in the first 2 weeks postweaning. In addition, the vaccine strains showed a probiotic-like effect by modulating gut microbiota favouring the establishment of beneficial bacteria, and by promoting gut barrier integrity

    NIMBUS: The Near-Infrared Multi-Band Ultraprecise Spectroimager for SOFIA

    Get PDF
    We present a new and innovative near-infrared multi-band ultraprecise spectroimager (NIMBUS) for SOFIA. This design is capable of characterizing a large sample of extrasolar planet atmospheres by measuring elemental and molecular abundances during primary transit and occultation. This wide-field spectroimager would also provide new insights into Trans-Neptunian Objects (TNO), Solar System occultations, brown dwarf atmospheres, carbon chemistry in globular clusters, chemical gradients in nearby galaxies, and galaxy photometric redshifts. NIMBUS would be the premier ultraprecise spectroimager by taking advantage of the SOFIA observatory and state of the art infrared technologies. This optical design splits the beam into eight separate spectral bandpasses, centered around key molecular bands from 1 to 4 microns. Each spectral channel has a wide field of view for simultaneous observations of a reference star that can decorrelate time-variable atmospheric and optical assembly effects, allowing the instrument to achieve ultraprecise calibration for imaging and photometry for a wide variety of astrophysical sources. NIMBUS produces the same data products as a low-resolution integral field spectrograph over a large spectral bandpass, but this design obviates many of the problems that preclude high-precision measurements with traditional slit and integral field spectrographs. This instrument concept is currently not funded for development.Comment: 14 pages, 9 figures, SPIE Astronomical Telescopes and Instrumentation 201

    Revisiting metal fluorides as lithium-ion battery cathodes.

    Get PDF
    Metal fluorides, promising lithium-ion battery cathode materials, have been classified as conversion materials due to the reconstructive phase transitions widely presumed to occur upon lithiation. We challenge this view by studying FeF3 using X-ray total scattering and electron diffraction techniques that measure structure over multiple length scales coupled with density functional theory calculations, and by revisiting prior experimental studies of FeF2 and CuF2. Metal fluoride lithiation is instead dominated by diffusion-controlled displacement mechanisms, and a clear topological relationship between the metal fluoride F- sublattices and that of LiF is established. Initial lithiation of FeF3 forms FeF2 on the particle's surface, along with a cation-ordered and stacking-disordered phase, A-LixFeyF3, which is structurally related to α-/β-LiMn2+Fe3+F6 and which topotactically transforms to B- and then C-LixFeyF3, before forming LiF and Fe. Lithiation of FeF2 and CuF2 results in a buffer phase between FeF2/CuF2 and LiF. The resulting principles will aid future developments of a wider range of isomorphic metal fluorides.X.H. is supported by funding from EPSRC Doctoral Prize, Adolphe Merkle and the Swiss National Science Foundation (Program NRP70 No. 153990) and European Commission via MSCA (Grant 798169). A.S.E. acknowledges financial support from the Royal Society. E.C.M. acknowledges funding from European Commission via MSCA (Grant 747449) and RTI2018-094550-A-100 from MICINN. Z. L. acknowledges funding from the Faraday Institution via the FutureCat consortium. C.J.P. is supported by the Royal Society through a Royal Society Wolfson Research Merit award, and EPSRC grant EP/P022596/1. A.L.G. acknowledges funding from the ERC (Grant 788144). This research was supported as part of the North Eastern Center for Chemical Energy Storage, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, and Office of Basic Energy Sciences under Award Number DE-SC0001294. Work done at Argonne and use of the Advanced Photon Source, an Office of Science User Facility operated for the US Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the US DOE under Contract No. DE-AC02-06CH11357. Work done at Diamond Light Source was under Proposal EE17315-1. The authors are grateful to Prof. G. Ceder and other NECCES members for many stimulating discussions concerning fluoride-based conversion reactions and on the origins of structural hysteresis. The authors also acknowledge the help from S. Dutton, T. Dean, A. Docker, M. Leskes and D. Keeble

    Voltage, Stability and Diffusion Barrier Differences between Sodium-ion and Lithium-ion Intercalation Materials

    Get PDF
    To evaluate the potential of Na-ion batteries, we contrast in this work the difference between Na-ion and Li-ion based intercalation chemistries in terms of three key battery properties—voltage, phase stability and diffusion barriers. The compounds investigated comprise the layered AMO2 and AMS2 structures, the olivine and maricite AMPO4 structures, and the NASICON A3V2(PO4)3 structures. The calculated Na voltages for the compounds investigated are 0.18–0.57 V lower than that of the corresponding Li voltages, in agreement with previous experimental data. We believe the observed lower voltages for Na compounds are predominantly a cathodic effect related to the much smaller energy gain from inserting Na into the host structure compared to inserting Li. We also found a relatively strong dependence of battery properties on structural features. In general, the difference between the Na and Li voltage of the same structure, ΔVNa–Li, is less negative for the maricite structures preferred by Na, and more negative for the olivine structures preferred by Li. The layered compounds have the most negative ΔVNa–Li. In terms of phase stability, we found that open structures, such as the layered and NASICON structures, that are better able to accommodate the larger Na+ ion generally have both Na and Li versions of the same compound. For the close-packed AMPO4 structures, our results show that Na generally prefers the maricite structure, while Li prefers the olivine structure, in agreement with previous experimental work. We also found surprising evidence that the barriers for Na+ migration can potentially be lower than that for Li+ migration in the layered structures. Overall, our findings indicate that Na-ion systems can be competitive with Li-ion systems.United States. Office of Naval Research (Contract N00014-11-1-0212)United States. Dept. of Energy (Contract DE-FG02 96ER45571)United States. Dept. of Energy (BATT program under Contract DE-AC02-05CH11231

    Origins Space Telescope: Baseline mission concept

    Get PDF
    The Origins Space Telescope will trace the history of our origins from the time dust and heavy elements permanently altered the cosmic landscape to present-day life. How did galaxies evolve from the earliest galactic systems to those found in the Universe today? How do habitable planets form? How common are life-bearing worlds? To answer these alluring questions, Origins will operate at mid-and far-infrared (IR) wavelengths and offer powerful spectroscopic instruments and sensitivity three orders of magnitude better than that of the Herschel Space Observatory, the largest telescope flown in space to date. We describe the baseline concept for Origins recommended to the 2020 US Decadal Survey in Astronomy and Astrophysics. The baseline design includes a 5.9-m diameter telescope cryocooled to 4.5 K and equipped with three scientific instruments. A mid-infrared instrument (Mid-Infrared Spectrometer and Camera Transit spectrometer) will measure the spectra of transiting exoplanets in the 2.8 to 20 μm wavelength range and offer unprecedented spectrophotometric precision, enabling definitive exoplanet biosignature detections. The far-IR imager polarimeter will be able to survey thousands of square degrees with broadband imaging at 50 and 250 μm. The Origins Survey Spectrometer will cover wavelengths from 25 to 588 μm, making wide-area and deep spectroscopic surveys with spectral resolving power R ∼ 300, and pointed observations at R ∼ 40,000 and 300,000 with selectable instrument modes. Origins was designed to minimize complexity. The architecture is similar to that of the Spitzer Space Telescope and requires very few deployments after launch, while the cryothermal system design leverages James Webb Space Telescope technology and experience. A combination of current-state-of-the-art cryocoolers and next-generation detector technology will enable Origins\u27 natural background-limited sensitivity

    Comprehensive study of the CuF<inf>2</inf> conversion reaction mechanism in a lithium ion battery

    Get PDF
    Conversion materials for lithium ion batteries have recently attracted considerable attention due to their exceptional specific capacities. Some metal fluorides, such as CuF2, are promising candidates for cathode materials owing to their high operating potential, which stems from the high electronegativity of fluorine. However, the high ionicity of the metal–fluorine bond leads to a large band gap that renders these materials poor electronic conductors. Nanosizing the active material and embedding it within a conductive matrix such as carbon can greatly improve its electrochemical performance. In contrast to other fluorides, such as FeF2 and NiF2, good capacity retention has not, however, been achieved for CuF2. The reaction mechanisms that occur in the first and subsequent cycles and the reasons for the poor charge performance of CuF2 are studied in this paper via a variety of characterization methods. In situ pair distribution function analysis clearly shows CuF2 conversion in the first discharge. However, few structural changes are seen in the following charge and subsequent cycles. Cyclic voltammetry results, in combination with in situ X-ray absorption near edge structure and ex situ nuclear magnetic resonance spectroscopy, indicate that Cu dissolution is associated with the consumption of the LiF phase, which occurs during the first charge via the formation of a Cu1+ intermediate. The dissolution process consequently prevents Cu and LiF from transforming back to CuF2. Such side reactions result in negligible capacity in subsequent cycles and make this material challenging to use in a rechargeable battery.We acknowledge the funding from the U.S. DOE BES via funding to the EFRC NECCES, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001294 (support for Rosa Robert and Lin-Shu Du) and EPSRC via the “nanoionics” programme grant (support for Xiao Hua). Use of the National Synchrotron Light Source (NSLS), Brookhaven National Laboratory (BNL), was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357.This is the final published version of the article. It first appeared at http://pubs.acs.org/doi/abs/10.1021/jp503902z and is posted here under the terms of ACS's Editors' Choice scheme (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html)
    corecore