84 research outputs found

    Inelastic O+H collisions and the OI 777nm solar centre-to-limb variation

    Full text link
    The OI 777 nm triplet is a key diagnostic of oxygen abundances in the atmospheres of FGK-type stars; however it is sensitive to departures from local thermodynamic equilibrium (LTE). The accuracy of non-LTE line formation calculations has hitherto been limited by errors in the inelastic O+H collisional rate coefficients: several recent studies have used the so-called Drawin recipe, albeit with a correction factor SH\mathrm{S_{H}} that is calibrated to the solar centre-to-limb variation of the triplet. We present a new model oxygen atom that incorporates inelastic O+H collisional rate coefficients using an asymptotic two-electron model based on linear combinations of atomic orbitals, combined with a free electron model, based on the impulse approximation. Using a 3D hydrodynamic stagger model solar atmosphere and 3D non-LTE line formation calculations, we demonstrate that this physically-motivated approach is able to reproduce the solar centre-to-limb variation of the triplet to 0.02 dex, without any calibration of the inelastic collisional rate coefficients or other free parameters. We infer logϵO=8.69±0.03\log\epsilon_{\mathrm{O}}=8.69\pm0.03 from the triplet alone, strengthening the case for a low solar oxygen abundance.Comment: 13 pages, 8 figures; published in Astronomy & Astrophysic

    Carbon and oxygen in metal-poor halo stars

    Full text link
    Carbon and oxygen are key tracers of the Galactic chemical evolution; in particular, a reported upturn in [C/O] towards decreasing [O/H] in metal-poor halo stars could be a signature of nucleosynthesis by massive Population III stars. We reanalyse carbon, oxygen, and iron abundances in thirty-nine metal-poor turn-off stars. For the first time, we take into account three-dimensional (3D) hydrodynamic effects together with departures from local thermodynamic equilibrium (LTE) when determining both the stellar parameters and the elemental abundances, by deriving effective temperatures from 3D non-LTE Hβ\beta profiles, surface gravities from Gaia parallaxes, iron abundances from 3D LTE Feii equivalent widths, and carbon and oxygen abundances from 3D non-LTE Ci and Oi equivalent widths. We find that [C/Fe] stays flat with [Fe/H], whereas [O/Fe] increases linearly up to 0.750.75 dex with decreasing [Fe/H] down to 3.0-3.0 dex. As such [C/O] monotonically decreases towards decreasing [O/H], in contrast to previous findings, mainly by virtue of less severe non-LTE effects for Oi at low [Fe/H] with our improved calculations.Comment: 5 pages, 2 figures; published in A&A Letter

    Effective temperature determinations of late-type stars based on 3D non-LTE Balmer line formation

    Get PDF
    Hydrogen Balmer lines are commonly used as spectroscopic effective temperature diagnostics of late-type stars. However, the absolute accuracy of classical methods that are based on one-dimensional (1D) hydrostatic model atmospheres and local thermodynamic equilibrium (LTE) is still unclear. To investigate this, we carry out 3D non-LTE calculations for the Balmer lines, performed, for the first time, over an extensive grid of 3D hydrodynamic STAGGER model atmospheres. For Hα\alpha, Hβ\beta, and Hγ\gamma, we find significant 1D non-LTE versus 3D non-LTE differences (3D effects): the outer wings tend to be stronger in 3D models, particularly for Hγ\gamma, while the inner wings can be weaker in 3D models, particularly for Hα\alpha. For Hα\alpha, we also find significant 3D LTE versus 3D non-LTE differences (non-LTE effects): in warmer stars (Teff6500T_{\text{eff}}\approx6500K) the inner wings tend to be weaker in non-LTE models, while at lower effective temperatures (Teff4500T_{\text{eff}}\approx4500K) the inner wings can be stronger in non-LTE models; the non-LTE effects are more severe at lower metallicities. We test our 3D non-LTE models against observations of well-studied benchmark stars. For the Sun, we infer concordant effective temperatures from Hα\alpha, Hβ\beta, and Hγ\gamma; however the value is too low by around 50K which could signal residual modelling shortcomings. For other benchmark stars, our 3D non-LTE models generally reproduce the effective temperatures to within 1σ1\sigma uncertainties. For Hα\alpha, the absolute 3D effects and non-LTE effects can separately reach around 100K, in terms of inferred effective temperatures. For metal-poor turn-off stars, 1D LTE models of Hα\alpha can underestimate effective temperatures by around 150K. Our 3D non-LTE model spectra are publicly available, and can be used for more reliable spectroscopic effective temperature determinations.Comment: 19 pages, 10 figures, abstract abridged; accepted for publication in Astronomy & Astrophysic

    3D non-LTE iron abundances in FG-type dwarfs

    Full text link
    Spectroscopic measurements of iron abundances are prone to systematic modelling errors. We present 3D non-LTE calculations across 32 STAGGER-grid models with effective temperatures from 5000 K to 6500 K, surface gravities of 4.0 dex and 4.5 dex, and metallicities from -3 dex to 0 dex, and study the effects on 171 Fe I and 12 Fe II optical lines. In warm metal-poor stars, the 3D non-LTE abundances are up to 0.5 dex larger than 1D LTE abundances inferred from Fe I lines of intermediate excitation potential. In contrast, the 3D non-LTE abundances can be 0.2 dex smaller in cool metal-poor stars when using Fe I lines of low excitation potential. The corresponding abundance differences between 3D non-LTE and 1D non-LTE are generally less severe but can still reach ±\pm0.2 dex. For Fe II lines the 3D abundances range from up to 0.15 dex larger, to 0.10 dex smaller, than 1D abundances, with negligible departures from 3D LTE except for the warmest stars at the lowest metallicities. The results were used to correct 1D LTE abundances of the Sun and Procyon (HD 61421), and of the metal-poor stars HD 84937 and HD 140283, using an interpolation routine based on neural networks. The 3D non-LTE models achieve an improved ionisation balance in all four stars. In the two metal-poor stars, they remove excitation imbalances that amount to 250 K to 300 K errors in effective temperature. For Procyon, the 3D non-LTE models suggest [Fe/H] = 0.11 ±\pm 0.03, which is significantly larger than literature values based on simpler models. We make the 3D non-LTE interpolation routine for FG-type dwarfs publicly available, in addition to 1D non-LTE departure coefficients for standard MARCS models of FGKM-type dwarfs and giants. These tools, together with an extended 3D LTE grid for Fe II from 2019, can help improve the accuracy of stellar parameter and iron abundance determinations for late-type stars.Comment: 17 pages, 11 figures, 5 tables; arXiv abstract abridged; accepted for publication in Astronomy & Astrophysic

    Two-dimensional non-LTE \ion{O}{I} 777\,nm line formation in radiation hydrodynamics simulations of Cepheid atmospheres

    Full text link
    Oxygen abundance measurements are important for understanding stellar structure and evolution. Measured in Cepheids, they further provide clues on the metallicity gradient and chemo-dynamical evolution in the Galaxy. However, most of the abundance analyses of Cepheids to date have been based on one-dimensional (1D) hydrostatic model atmospheres. Here, we test the validity of this approach for the key oxygen abundance diagnostic, the \ion{O}{I} 777nm777\,\mathrm{nm}~triplet lines. We carry out 2D non-LTE radiative transfer clculations across two different 2D radiation hydrodynamics simulations of Cepheid atmospheres, having stellar parameters of Teff=5600T_\mathrm{eff}= 5600 K, solar chemical compositions, and logg=1.5\log\,g= 1.5 and 2.02.0, corresponding to pulsation periods of 9 and 3 days, respectively. We find that the 2D non-LTE versus 1D LTE abundance differences range from 1.0-1.0~dex to 0.25-0.25~dex depending on pulsational phase. The 2D non-LTE versus 1D non-LTE abundance differences range from 0.2-0.2~dex to 0.80.8~dex. The abundance differences are smallest when the Cepheid atmospheres are closest to hydrostatic equilibrium, corresponding to phases of around 0.30.3 to 0.80.8, and we recommend these phases for observers deriving the oxygen abundance from \ion{O}{I} 777nm777\,\mathrm{nm} triplet with 1D hydrostatic models.Comment: 9 pages, 10 figures; Published in Astronomy and Astrophysic

    Extended atomic data for oxygen abundance analyses

    Full text link
    As the most abundant element in the universe after hydrogen and helium, oxygen plays a key role in planetary, stellar, and galactic astrophysics. Its abundance is especially influential on stellar structure and evolution, and as the dominant opacity contributor at the base of the Sun's convection zone it is central to the discussion around the solar modelling problem. However, abundance analyses require complete and reliable sets of atomic data. We present extensive atomic data for O I, by using the multiconfiguration Dirac-Hartree-Fock and relativistic configuration interaction methods. Lifetimes and transition probabilities for radiative electric dipole transitions are given and compared with results from previous calculations and available measurements. The accuracy of the computed transition rates is evaluated by the differences between the transition rates in Babushkin and Coulomb gauges, as well as by a cancellation factor analysis. Out of the 989 computed transitions in this work, 205 are assigned to the accuracy classes AA-B, that is, with uncertainties less than 10%, following the criteria defined by the National Institute of Standards and Technology Atomic Spectra Database. We discuss the influence of the new log(gf) values on the solar oxygen abundance and ultimately advocate logϵO=8.70±0.04\log\epsilon_{\mathrm{O}}=8.70\pm0.04.Comment: 13 pages, 5 figures; Accepted for publication in Astronomy & Astrophysic

    3D NLTE spectral line formation of lithium in late-type stars

    Get PDF
    Accurately known stellar lithium abundances may be used to shed light on a variety of astrophysical phenomena such as Big Bang nucleosynthesis, radial migration, ages of stars and stellar clusters, and planet engulfment events. We present a grid of synthetic lithium spectra that are computed in non-local thermodynamic equilibrium (NLTE) across the STAGGER grid of three-dimensional (3D) hydrodynamic stellar atmosphere models. This grid covers three Li lines at 610.4 nm, 670.8 nm, and 812.6 nm for stellar parameters representative of FGK-type dwarfs and giants, spanning Teff=4000T_{\rm{eff}}=4000-7000 K, logg=1.5\log g=1.5-5.0, [Fe/H]=4.0[\rm{Fe}/\rm{H}] = -4.0-0.5, and A(Li)=0.5\textrm{A(Li)} = -0.5-4.0. We find that our abundance corrections are up to 0.15 dex more negative than in previous work, due to a previously overlooked NLTE effect of blocking of UV lithium lines by background opacities, which has important implications for a wide range of science cases. We derive a new 3D NLTE solar abundance of A(Li)=0.96±0.05\textrm{A(Li)} = 0.96 \pm 0.05, which is 0.09 dex lower than the commonly used value. We make our grids of synthetic spectra and abundance corrections publicly available through the Breidablik package. This package includes methods for accurately interpolating our grid to arbitrary stellar parameters through methods based on Kriging (Gaussian process regression) for line profiles, and MLP (Multi-Layer Perceptrons, a class of fully connected feedforward neural networks) for NLTE corrections and 3D NLTE abundances from equivalent widths, achieving interpolation errors of the order 0.01 dex.Comment: 20 pages, 12 figures, accepted for publication in MNRA

    Higher metal abundances do not solve the solar problem

    Full text link
    Context. The Sun acts as a cornerstone of stellar physics. Thanks to spectroscopic, helioseismic and neutrino flux observations, we can use the Sun as a laboratory of fundamental physics in extreme conditions. The conclusions we draw are then used to inform and calibrate evolutionary models of all other stars in the Universe. However, solar models are in tension with helioseismic constraints. The debate on the ``solar problem'' has hitherto led to numerous publications discussing potential issues with solar models and abundances. Aims. Using the recently suggested high-metallicity abundances for the Sun, we investigate whether standard solar models, as well as models with macroscopic transport reproducing the solar surface lithium abundances and analyze their properties in terms of helioseismic and neutrino flux observations. Methods. We compute solar evolutionary models and combine spectroscopic and helioseismic constraints as well as neutrino fluxes to investigate the impact of macroscopic transport on these measurements. Results. When high-metallicity solar models are calibrated to reproduce the measured solar lithium depletion, tensions arise with respect to helioseismology and neutrino fluxes. This is yet another demonstration that the solar problem is also linked to the physical prescriptions of solar evolutionary models and not to chemical composition alone. Conclusions. A revision of the physical ingredients of solar models is needed in order to improve our understanding of stellar structure and evolution. The solar problem is not limited to the photospheric abundances if the depletion of light elements is considered. In addition, tighter constraints on the solar beryllium abundance will play a key role in the improvement of solar models.Comment: Accepted for publication in Astronomy and Astrophysic
    corecore