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ABSTRACT
Accurately known stellar lithium abundances may be used to shed light on a variety of astrophysical phenomena such as big bang
nucleosynthesis, radial migration, ages of stars and stellar clusters, and planet engulfment events. We present a grid of synthetic
lithium spectra that are computed in non-local thermodynamic equilibrium (NLTE) across the STAGGER grid of three-dimensional
(3D) hydrodynamic stellar atmosphere models. This grid covers three Li lines at 610.4, 670.8, and 812.6 nm for stellar parameters
representative of FGK-type dwarfs and giants, spanning Teff = 4000–7000 K, log g = 1.5–5.0, [Fe/H] = −4.0–0.5, and A(Li)
= −0.5–4.0. We find that our abundance corrections are up to 0.15 dex more negative than in previous work, due to a previously
overlooked NLTE effect of blocking of UV lithium lines by background opacities, which has important implications for a wide
range of science cases. We derive a new 3D NLTE solar abundance of A(Li) = 0.96 ± 0.05, which is 0.09 dex lower than
the commonly used value. We make our grids of synthetic spectra and abundance corrections publicly available through the
BREIDABLIK package. This package includes methods for accurately interpolating our grid to arbitrary stellar parameters through
methods based on Kriging (Gaussian process regression) for line profiles, and multilayer perceptrons (a class of fully connected
feedforward neural networks) for NLTE corrections and 3D NLTE abundances from equivalent widths, achieving interpolation
errors of the order of 0.01 dex.
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1 IN T RO D U C T I O N

Lithium is the only element which can be produced through big bang
nucleosynthesis (BBN), cosmic-ray spallation, and stellar processes.
Lithium is also a fragile element, destroyed in low-mass stars in a
manner that depends on stellar mass, metallicity, age, and possibly
other factors. The many production and destruction processes make
lithium a complex but insightful element. Lithium can thus illuminate
a number of distinct science cases, including the cosmological
lithium problem, radial migration, ages of stars and stellar clusters,
and planet engulfment events. However, these applications in large
part rely on accurate measurements of lithium abundances in late-
type stars.

The lithium abundance (A(Li)1) in stars can be used to estimate the
cosmological value produced during BBN (Cyburt et al. 2016). Warm
old, metal-poor dwarfs near the main-sequence turnoff-off (MSTO)
have been found to exhibit roughly the same lithium abundances
over a wide range of metallicities, the so-called Spite plateau (Spite

� E-mail: ellawang@mso.anu.edu.au
1We use the customary abundance notation where A(X) ≡ log (NX/NH) + 12
and [X/Y] ≡ (A(X) − A(Y)) − (A(X) − A(Y))�, with NX representing the
number density of element “X”.

& Spite 1982). This plateau has A(Li) ≈ 2.0−2.2, and is commonly
interpreted to reflect the lithium abundance with which these old
metal-poor stars were born. However, the cosmological lithium
abundance predicted from BBN is A(Li) = 2.75 ± 0.02, a factor
of at least three larger than the abundance in the oldest stars (Pitrou
et al. 2018). The reason for this discrepancy is generally thought to
be due to a combination of depletion and non-destructive deposition
through gravitational settling (e.g. Richard, Michaud & Richer 2005)
but speculation also exists that this may signal non-standard particle
physics affecting the BBN production (Fields 2011). Parameterized
stellar Li depletion predictions reproduce observations of lithium in
globular cluster stars quite well, including the signature of dredge-
up through a short-lived increase of lithium at the middle of the
subgiant branch (e.g. Korn et al. 2007; Lind et al. 2008; Nordlander
et al. 2012; Gruyters, Nordlander & Korn 2014; Gruyters et al.
2016). Mucciarelli, Salaris & Bonifacio (2012) recognized that
lithium abundances in metal poor lower RGB stars also exhibit a
plateau. These abundances are sensitive only to effects of dilution
(reflecting the depth of the convection zone) and destruction that
occurred prior, while effects of non-destructive deposition are erased
by the deep convection zone. Measurements for RGB stars in the
Milky Way, A(Li) ≈ 1.0 (Mucciarelli et al. 2012), as well as in the
extragalactic globular cluster M54, A(Li) ≈ 0.9 (Mucciarelli et al.
2014), imply an initial composition with A(Li) ≈ 2.3–2.4 that does
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not vary with environment and therefore is unlikely to be depleted
through external mechanisms. Although slightly higher than the Spite
plateau, these estimates still imply significant destruction relative to
the cosmological abundance.

At metallicities [Fe/H] > −1, the abundance of lithium becomes
coupled to [Fe/H] through chemical enrichment processes such as
cosmic-ray spallation (Prantzos 2012; Prantzos et al. 2017) and
possibly also stellar production (Bensby & Lind 2018). Lithium
abundance measurements in stars born at different locations and
times can therefore tell us about the history of chemical evolution in
the Galaxy, and radial migration of stars in the Galaxy (Schönrich &
Binney 2009; Prantzos et al. 2017).

Lithium abundance measurements can be used to determine ages
for young stellar clusters. Because pre-main-sequence stars are fully
convective, they will rapidly deplete lithium when their cores reach
T ≈ 2.5 × 106 K (Basri, Marcy & Graham 1996; Chabrier, Baraffe
& Plez 1996; Bildsten et al. 1997; Ushomirsky et al. 1998; Jeffries
2014). Even in coeval groups, the amount of depletion does, however,
vary significantly from star to star (e.g. Sestito & Randich 2005;
Žerjal et al. 2019), possibly tied to details of rotation and angular
momentum transport (see e.g. Do Nascimento et al. 2009; Soderblom
2010). It is therefore still unclear just why stars like the Sun exhibit
significant lithium depletion by more than two orders of magnitude
(e.g. Meléndez et al. 2010). Similar patterns are seen in other
stars, where it is still unclear whether this depletion correlates with
the presence of exoplanets (Gonzalez 2008; Israelian et al. 2009;
Delgado Mena et al. 2015; Gonzalez 2015) as several studies find no
such correlation (Ryan 2000; Baumann et al. 2010; Ramı́rez et al.
2012; Bensby & Lind 2018; Carlos et al. 2019). Some of the proposed
mechanisms for enhanced lithium depletion for stars with planets are
stellar angular momentum loss due to planetary migration (Castro
et al. 2008), and strong differential rotation caused by interactions
between the protoplanetary disc and star (Bouvier 2008). Where no
enhanced lithium depletion is detected, lithium depletion is instead
linked to stellar ages; with older stars exhibiting increased lithium
depletion (Baumann et al. 2010; Carlos et al. 2019).

In one-dimensional (1D) hydrostatic atmospheres, the accuracy
of abundance determinations in late-type stars may be severely
impacted by the commonly used approximations of local thermo-
dynamic equilibrium (LTE). Modelling of lithium spectra in non-
LTE (NLTE) has already been performed in many studies across a
wide parameter space (e.g. Steenbock & Holweger 1984; Carlsson
et al. 1994; Pavlenko & Magazzu 1996; Takeda & Kawanomoto
2005; Lind, Asplund & Barklem 2009; Osorio et al. 2011; Takeda
2019). These studies find that the NLTE effect can lead to abundance
corrections of up to 0.4 dex (Lind et al. 2009).

In addition to LTE assumptions, 3D hydrodynamic atmospheres
also affect measured lithium abundances. Recent studies suggest that
although the differences between 3D NLTE and 1D LTE synthetic
spectra have been found to often be rather small due to fortuitous
cancellation between NLTE and 3D hydrodynamic effects that work
in opposite directions, this cancellation is not perfect and abundance
corrections may still be as large as 0.3 dex (Klevas et al. 2018).
Full 3D NLTE calculations (e.g. Kiselman 1997; Asplund, Carlsson
& Botnen 2003; Barklem, Belyaev & Asplund 2003; Sbordone
et al. 2010; Lind et al. 2013; Klevas et al. 2016; Mott et al. 2017;
Harutyunyan et al. 2018; Klevas et al. 2018; Mott et al. 2020) have
so far been limited in their coverage of parameter space due to the
large computational cost involved.

This study presents a 3D NLTE Li grid spanning the full parameter
range expected for FGK-type dwarfs and giants, covering a subset
of Teff = 4000–7000 K, log g = 1.5–5.0, [Fe/H] = −4–0.5 – a total

of 195 3D hydrodynamic model atmospheres – with abundances in
the range A(Li) = −0.5–4. We detail the model atom and stellar
atmospheres in Section 2. In Section 3, we present and discuss our
results with comparison to previous work. We introduce our interpo-
lation methods and the publicly available synthetic spectra, spectrum
interpolation, and abundance correction package BREIDABLIK2 in
Section 4. Lastly, in Section 5, we present results of our new lower
inferred abundances on a handful of science cases, before presenting
our conclusions in Section 6.

2 3 D N LTE SP E C T R A L L I N E FO R M AT I O N F O R
LI

We use the 3D NLTE radiative transfer code BALDER, which origi-
nates in the MULTI3D code (Botnen & Carlsson 1999; Leenaarts &
Carlsson 2009) but has since been developed significantly, including
a new equation-of-state and opacity package BLUE (Amarsi et al.
2016a,b, 2018).

The statistical equilibrium is solved by calculating the mean
radiation field with short characteristic rays. These are distributed
as μ ≡ cos θ relative to the vertical on the interval −1 to +1 using a
Gauss–Lobatto quadrature with eight points. For non-vertical rays,
we consider four equidistant azimuthal angles, giving a total of 26
rays. The emergent flux is computed by calculating the emergent
intensity in the vertical direction, as well as in seven inclined
directions each using eight horizontal angles, for a total of 57 rays.
We compute spectra for abundances in the range A(Li) = −0.5 to
+4.0, in steps of 0.5 dex, which produces an abundance interpolation
error of at most ∼0.02 dex, as determined through comparison to
calculations over the full abundance range with very small steps.

2.1 Li model atom

We use a model atom containing 20 levels of Li I plus the Li II ground
state, connected by 113 bound–bound and 20 bound-free transitions.
We compute the spectra of the three strongest transitions, highlighted
in Fig. 1.

The model atom originates with Carlsson et al. (1994), and
was substantially updated by Lind et al. (2009) and Osorio et al.
(2011). Briefly, energy levels and radiative transition data come
from TOPbase (Peach, Saraph & Seaton 1988), with some notable
exceptions. The atomic data for the 670.8-nm transition uses an
oscillator strength from Yan, Tambasco & Drake (1998), fine-
structure splitting from Sansonetti et al. (2011) and hyperfine splitting
from Beckmann, Böklen & Elke (1974) and Puchalski & Pachucki
(2009). Although updated, the resulting wavelengths and relative
oscillator strengths are consistent with those of Smith, Lambert &
Nissen (1998). Likewise, the 610.4-nm transition uses an oscillator
strength from Yan et al. (1998) and fine-structure splitting from
Lindgård & Nielson (1977). For all transitions, we assume the
presence of 7Li only, neglecting any isotopic splitting. The three
strongest transitions use collisional broadening parameters based on
Anstee & O’Mara (1995) and Barklem & O’Mara (1997).

Cross-sections for excitation and ionization through electron
collisions were calculated and implemented by Osorio et al. (2011).
Inelastic hydrogen collisional transition rates for excitation and
charge transfer of low-lying states (Barklem et al. 2003) are based on
cross-sections from Croft, Dickinson & Gadea (1999) and Belyaev
& Barklem (2003). We have further implemented inelastic hydrogen

2https://github.com/ellawang44/Breidablik
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3D NLTE line formation of lithium 2161

Figure 1. Term diagram of lithium, illustrating the energies of different
states, ordered according to spectroscopic term. Bound–bound radiative
transitions are marked with black lines, and the abundance diagnostic lines at
610.4, 670.8 , and 812.6 nm are highlighted in red. The long horizontal blue
lines are super levels where the l quantum number has been collapsed. The
2F0 states are superstates representing l ≥ 3.

collisional excitation rates for more highly excited states following
Kaulakys (1985, 1991), using the publicly available code KAULAKYS

(Barklem 2016).

2.2 Stellar atmospheres

2.2.1 3D hydrodynamical stellar model atmospheres

To calculate 3D NLTE synthetic spectra, we use BALDER to perform
radiative transfer post-processing of 3D hydrodynamical model
atmospheres from the STAGGER-grid (Magic et al. 2013). Each
simulation covers a time sequence of roughly two convective turnover
times, represented by about 150 snapshots. A small number of
simulations suffered from convergence problems, and are therefore
not considered in this work. As a result, we selected 195 models,
shown in Fig. 2. These cover stellar parameters representing FGK-
type dwarfs and giants, in a wide range of metallicities between
[Fe/H] = −4.0 and +0.5. All models adopt the Asplund et al. (2009)
metal mixture, aside from models with [Fe/H] ≤ −1 where an α-
enhancement of [α/Fe] = 0.4 dex is further applied.

From each simulation, we select five temporally equidistant
snapshots. Test calculations based on larger sets of snapshots indicate
that using five snapshots results in a typical abundance error (σ/

√
N )

less than 0.02 dex and 0.01 dex in LTE and NLTE respectively based
on temporal variations in the equivalent widths. More specifically, we
find the largest snapshot-to-snapshot variations amongst the hottest
models, with equivalent widths varying by typically σ = 0.03 dex
in LTE and by 0.02 dex in NLTE. Importantly, the ratio of LTE
and NLTE equivalent widths may have a larger standard deviation,
of the order of 0.04 dex, indicating that temporal variations may
have different sign in LTE and NLTE and do not perfectly correlate.
This thus indicates that fewer snapshots are required to sample
a simulation with NLTE calculations than the corresponding LTE
calculations. These test calculations furthermore suggest that one
should avoid the approach where NLTE corrections are derived from

Figure 2. Stellar parameters of the Stagger-grid models (Magic et al. 2013)
used in this work, colour-coded according to [Fe/H]; the Sun, HD 84937,
HD 140283 and Procyon are shown with squares. Stellar evolution tracks
at solar metallicity with masses in the range 0.7–1.5 M� in steps of 0.1 M�
from MIST (Paxton et al. 2011, 2013, 2015; Choi et al. 2016; Dotter 2016)
are shown for reference, labelled according to mass.

a small number of snapshots and applied to a longer sequence of LTE
calculations, aside from possible issues related to differences in line
shapes.

The original 3D hydrodynamic simulations were computed on a
staggered Cartesian grid with 2403 elements, extending deep below
the stellar photosphere. However, for the radiative post-processing,
we interpolate the hydrodynamic simulations to 80 × 80 volume
elements in the horizontal direction and 220 volume elements along
the vertical and truncate the deep layers. This interpolation retains
the refined resolution of the continuum-forming regions that have
steep temperature gradients, as well as the optically thin line-forming
regions. The truncation and interpolation follow that described in
section 2.1 of Amarsi et al. (2018). The total number of volume
elements is therefore of the order of 106.

2.2.2 1D hydrostatic stellar model atmospheres

For comparison, we also use a set of custom 1D hydrostatic stellar
model atmospheres which treat convection using the classical mixing
length theory computed with the ATMO code written by W. Hayek
(see appendix A of Magic et al. 2013 for details). The 1D models
were computed at exactly the same stellar parameters as the 3D
hydrodynamic models, share the same equation of state and opacities,
and were based on the same opacity binning procedure. We also
compute additional 1D models at randomly selected values of Teff

and log g in order to test our interpolation procedures.
Unlike the 3D hydrodynamic models, where convective motions

arise naturally from first principles, convection in these 1D models is
approximated using mixing length theory controlled by a mixing
length parameter (αMLT ≡ l/HP, where l is the mixing length
and HP is the pressure scale height). We used models computed
with αMLT = 1.0, 1.5, and 2.0, thereby covering a range typically
used in the literature. In the radiative transfer post-processing,
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small-scale hydrodynamic motions that produce an effective broad-
ening of line opacities leading to desaturation of spectral lines
are mimicked through a local broadening parameter known as
microturbulence (Asplund et al. 2000). We select the values vmic

= 0, 1, and 2 km s−1. For our default comparisons, we use models
with αMLT = 1.5 and vmic = 1 km s−1.

In addition to these custom model atmospheres, we also use the
commonly used MARCS grid (Gustafsson et al. 2008), which covers a
wide range in stellar parameters representative of FGKM-type dwarfs
and giants.

3 R ESULTS

In this section, we introduce the main NLTE effects on Li as discussed
in the literature based on 1D (Section 3.1) and 3D (Section 3.2)
modelling. We present our 3D line formation results in Section 3.3.
In Section 3.4, we compare our results to previous work, and discuss
a previously neglected effect of background line opacity blocking
of lithium lines in the UV that would otherwise deplete low-lying
populations through photon pumping. With this effect taken into
account, we generally find stronger optical lines implying lower
inferred lithium abundances. Lastly, in Section 3.5, we discuss the
abundance correction over the HR diagram.

3.1 Departures from LTE in 1D models

The main NLTE mechanisms relevant to lithium have been presented
in a large body of previous studies (e.g. Steenbock & Holweger
1984; Carlsson et al. 1994; Pavlenko & Magazzu 1996; Takeda &
Kawanomoto 2005; Lind et al. 2009; Osorio et al. 2011). While our
model represents a substantial upgrade in terms of, e.g. collisional
transition rates and the treatment of background opacities, the
pedagogical description of NLTE mechanisms and behaviours by
Carlsson et al. (1994) largely still applies to our results. As discussed
by Lind et al. (2009), this agreement results from newer model
atmospheres exhibiting steeper temperature gradients that increase
the excess of ultraviolet radiation and thus leads to enhanced overion-
ization, which partially cancels with the use of hydrogen collisional
transition rates from Barklem et al. (2003) that are significantly
larger than the previously used hydrogen collisional rates predicted
through the Drawin (1968) formula. Furthermore, while Osorio et al.
(2011) found large differences between their R-matrix calculations
of electron collisional transition rates compared to previous semi-
empirical estimates, the two happen to show agreement within a
factor of 2 for the dominant 2s–2p resonance transition, resulting in
negligible effects on level populations and abundance corrections.

When the 670.8-nm resonance line is strong, departures from LTE
are mainly controlled by the line itself through photon losses in so-
called resonance scattering. In NLTE, these photon losses dictate that
the radiation field (Jν) in the line becomes sub-thermal, i.e. smaller
than the Planck function (Bν). For a sufficiently strong line where
line opacity dominates over continuum opacity, the source function
(Sν) becomes controlled by the line rather than the continuum. As
the line source function (Sl) becomes tied to the radiation field (Sl ≈
Jν < Bν), the drop in Sl causes core darkening that strengthens the
line, thus leading to lower inferred abundances in NLTE compared
to LTE.

The steep temperature dependence of Bν in the ultraviolet may
produce a superthermal radiation field (Jν > Bν), which has the
opposite effect to resonance scattering. Photoionization through the
continua of the ground and first excited states (2s and 2p) causes a
drop in the populations of Li I through overionization in the presence

of steep temperature gradients or small ultraviolet opacities. The
corresponding effect of photon pumping through ultraviolet spectral
lines rather than continua is largely quenched by background metal-
line opacities.

At infrared wavelengths, the opposite case will typically be true,
with a sub-thermal radiation field (Jν < Bν). The resulting deficit
of photoionization of highly excited states leads to increased level
populations through overrecombination. The flow of excess electrons
propagates down through photon losses in a chain of infrared lines,
and further to the ground state through the resonance line.

The interplay of these various NLTE mechanisms leads to abun-
dance corrections that vary in magnitude and sign with stellar
parameters as well as the abundance of lithium. A stronger resonance
line will produce more negative abundance corrections through
resonance scattering. Higher Teff, and to lesser extent lower log g,
weakens the resonance line and further makes abundance corrections
more positive through enhanced overionization. At lower [Fe/H]
the smaller background opacities compete with a flattening of the
atmospheric temperature gradients due to a lack of radiative cooling
(in 1D model atmospheres), that in practice leads to only a small
enhancement of overionization and thus abundance corrections that
become slightly more positive.

The atom presented in Section 2.1 was also used to compute a
comprehensive grid of 1D departure coefficients for use in GALAH
DR3 (Buder et al., in preparation), and made available through
Amarsi et al. (2020), and Amarsi (2020).

3.2 Departures from LTE in 3D models

While the mechanisms outlined above are still the dominant ones in
3D model atmospheres, their relative importance and behaviour with
stellar parameters changes due to the generally steeper temperature
gradients present.

In particular, the outer layers of hydrodynamic atmospheres are
effectively cooled by convective motions and adiabatic expansion.
In warm metal-poor models, the deficit of opacities leads to radiative
heating and cooling rates far below equilibrium, which alongside the
convective cooling mechanism, results in significantly lower temper-
atures than seen in hydrostatic atmospheres in radiative equilibrium
(Asplund et al. 1999; Collet, Asplund & Trampedach 2006). In LTE,
low temperatures in the outer regions of the atmospheres lead to
a decrease in the ionization fraction of lithium and thus strongly
enhanced populations and resulting line strengths, in particular, in
the steep temperature structures formed by hot upwelling gas in
granules, producing negative abundance corrections of the order of
0.3 dex in warm metal-poor dwarfs (Asplund et al. 1999; Klevas et al.
2016).

Pioneering work utilizing limited radiative transfer in 3D hy-
drodynamic simulations of the Sun indicated that a decoupling
of the radiation field from the local gas properties would drive
significantly stronger overionization effects than in the corresponding
1D hydrostatic models, weakening the line by 0.1 dex (Kiselman
1997; Uitenbroek 1998). This decoupling was also observationally
verified in resolved spectra of the solar surface (Kiselman 1998),
which in contrast to 3D LTE predictions exhibited no significant
variation of line strengths as a function of the continuum intensity.
Calculations by Asplund et al. (2003) and Barklem et al. (2003)
with the MULTI3D code (Botnen & Carlsson 1999) verified these
early results, and extended work to metal-poor dwarfs where effects
were significantly stronger with abundance corrections comparing
3D NLTE to 3D LTE of the order of 0.2 dex, resulting in good
agreement between 3D NLTE and 1D NLTE calculations. They
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Figure 3. Line profiles computed in 3D NLTE (solid lines) and 1D LTE
(dashed lines) for a cool red giant star model with nominal parameters Teff =
5000 K, log g = 2.0, [Fe/H] = −2.0, and a range of A(Li) (colour-coded as
indicated in the legend). The 1D model uses αMLT = 1.5 and vmic = 1 km s−1.
Neither rotational nor macroturbulent broadening has been applied.

found that the effect of enhanced overionization was particularly
pronounced in regions where the temperature gradient is strong, i.e.
where LTE line strengths were the most strongly enhanced, while
the opposite behaviour may appear above intergranular lanes.

Further work has extended the coverage of 3D NLTE calculations
to better sample the spatial and temporal variations in the 3D
hydrodynamic simulations of metal-poor dwarfs (Sbordone et al.
2010; Lind et al. 2013) and giants (Klevas et al. 2016; Nordlander
et al. 2017) as well as solar-metallicity stars (e.g. Mott et al. 2017;
Harutyunyan et al. 2018). We note, however, that these calculations
are heterogeneous and the results are sometimes incompatible due
to different implementations of model atoms (in terms of electron
structure complexity and collisional rates), radiative transfer and
opacity treatment, and model atmospheres.

3.3 3D NLTE line formation

We show in Fig. 3 profiles of the 670.8-nm resonance line for
a very metal-poor model representing a star on the red giant
branch. While the 1D LTE line profiles are sharp with clear fine-
structure components, velocity fields in the 3D model of the order
of 5 km s−1 (as compared to the thermal linewidth of 3 km s−1)
cause a smoothed appearance for the 3D NLTE profiles. At the
lowest A(Li), the line forms in relatively deep atmospheric layers
where high pressures lead to high collisional rates that nearly uphold
LTE. As A(Li) increases, line formation begins to push higher in the
photosphere toward layers with significantly lower temperatures in
the hydrodynamic simulation than in the corresponding hydrostatic
model. More importantly, however, photon losses in the core of the
670.8-nm line become significant, leading to a deeper line with an
NLTE effect that strengthens with increasing A(Li) through so-called
resonance scattering.

Fig. 4 shows top-down views of four representative model atmo-
spheres, as seen in disc-centre intensity. From the left- to right-hand
side, these represent a star on the lower main-sequence, a metal-
poor red giant branch star, the Sun, and a metal-poor main-sequence
turn-off star as commonly observed on the Spite plateau. Each

row illustrates different properties of the 670.8-nm line: the local
continuum intensity (Icont), the variation of log reduced equivalent
width (REW) relative to its average in LTE (d REWLTE) and NLTE
(d REWNLTE), and finally the NLTE effect on line strengths. In this
study, we use the REW

REW = log10

(
EW

λ0

)
, (1)

where EW is the equivalent width of the line profile and λ0 its central
wavelength at rest. The last row of Fig. 4 shows the difference in line
strength between NLTE and LTE, defined as

δREW = REWNLTE − REWLTE. (2)

While the dominant difference in continuum intensity is due to the
variation in surface temperature and therefore overall brightness,
differences, in contrast, can also be appreciated to increase with Teff

and decrease with log g and [Fe/H] (for an in-depth discussion, see
Magic et al. 2013). Like previous work, we find that the LTE line
strength anticorrelates with the surface intensity pattern, such that
bright upflowing granules due to their strong temperature gradients
typically exhibit strong lines, compared to the cool intergranular
lanes with weaker temperature gradients. In NLTE, however, this
correlation is weakened due to the influence of non-local radiation
fields. Foremost, the bright granules illuminate the line-forming lay-
ers immediately above, leading to a strongly superthermal radiation
field. This drives an excess of photoionization in the continuum of
the first excited state, 2p, leading to overionization that weakens
the line strength relative to LTE by as much as a factor of ten for
the two metal-poor models. In contrast, the line forms deeper above
intergranular lanes, where the flatter temperature gradient does not
produce a strongly superthermal radiation field, and instead, sub-
thermal radiation across the infrared continua of more highly excited
states drive overrecombination. A similar but milder effect of this
is also seen in the solar model, where its weak line strength overall
shifts line formation deeper. At the same time, its high-surface gravity
and strong metal-line opacity both lessen all departures from LTE.

The discussion above focused mainly on the three warm models.
The cool lower main-sequence model exhibits similar effects to the
others, albeit at smaller magnitude due to the immense line strength
of nearly 600 mÅ, because it’s equivalent width is proportional to

√
n

(n is the population of lower state) instead of proportional to n like
for weak lines. The combination of low surface temperature and high
A(Li), however, means the subordinate lines at 610.4 and 812.6 nm
become measurable. We therefore look more closely at this model
by examining its surface variation for all three lithium lines in Fig. 5.
The subordinate lines originate from the first excited state at Elow

= 1.84 eV and are therefore significantly weaker than the resonance
line, and thus probe different heights of formation as compared to
the resonance line. For the 670.8-nm line, the core depth is mainly
controlled by resonance scattering, which compared to LTE always
enhances the line strength through core darkening. This results in
the line core having similar depth across the entire surface in NLTE.
In LTE, however, the core may be significantly weakened either due
to the weak temperature gradient seen above intergranular lanes, or
due to temperature contrast inversions in the optically thin layers
caused by mechanical heating. In NLTE, the wings of the 670.8-nm
line as well as the cores of the 610.4- and 812.6-nm lines, are instead
controlled by the excess of UV flux. There is a balance between
overionization and overrecombination that is driven in a similar way
to that seen for the other models in Fig. 4, and where on average
overionization dominates.
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2164 E. Wang et al.

Figure 4. Top-down view of different 3D stellar models (columns), illustrating different properties of the 670.8-nm transition in disc-centre intensity (rows).
Models are labelled by their stellar parameters, Teff, log g, [Fe/H] and A(Li). From the top to bottom panels, the rows illustrate the continuum intensity across the
stellar surface at 670.8 nm (Icont), the variation in LTE REW (REWLTE) relative to its average (d REWLTE), likewise in NLTE (d REWNLTE), and the difference
between REWNLTE and REWLTE (δREW). The average values of REWLTE and REWNLTE are labelled in the top left of the corresponding panels.

3.4 The role of UV lines

In order to quantify NLTE effects, we define abundance corrections,

	NLTE = A(Li)3D,NLTE − A(Li)1D,LTE, (3)

where A(Li) is calculated based on matching REW. Our 	NLTE
are generally more negative than found in previous work, as shown
in Fig. 6, with differences being larger at lower Teff and log g, and
higher [Fe/H]. This is an effect of our more accurate treatment
of background line opacities: In BALDER, overlapping transitions
are implemented through the use of a common set of wavelengths
and opacities for all line and continuum transitions, including the
background lines and continua from other elements that are treated

in LTE. After computing the statistical equilibrium, background
line opacities can optionally be switched on or off in order to
produce emergent spectra with or without blends, while overlapping
transitions in the atom of study are always retained unless individual
transitions are explicitly disabled. This is in contrast to, e.g. the MULTI

code (Carlsson 1986), which does not treat overlapping transitions
and by default only considers background line opacities that blend
with continua but not line transitions (see e.g. Collet, Asplund
& Thévenin 2005), unless blending line transitions are specified
explicitly (e.g. as was done by Nordlander & Lind 2017).

We illustrate effects of partially disabling background line opac-
ities in Fig. 7, where we compare results from Lind et al. (2009) to
test calculations with MARCS models using the same model atom as
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3D NLTE line formation of lithium 2165

Figure 5. Top-down view of a 3D stellar model with Teff = 4500 K, log g = 5.0 and [Fe/H] = 0.0, calculated with A(Li) = 3.3 for different spectral lines
(columns, labelled by wavelength in units of nm). From the top to bottom panels, the rows illustrate the variation in LTE REW (REWLTE) relative to its average
(d REWLTE), likewise in NLTE (d REWNLTE), and the difference between REWNLTE and REWLTE (δ REW). The average values of REWLTE and REWNLTE are
labelled in the top left-hand side of the corresponding panels.

in their work. As expected, we find that removing background line
blocking for lines redward of 600 nm mainly causes a decrease of
photon losses in the 670.8-nm line, which is itself normally respon-
sible for increasing the ground-state population through so-called
resonance scattering. When disabling background line blocking of
all line transitions, we find that a number of UV resonance and
subordinate lines together deplete the 2s and 2p states through photon
pumping by an amount comparable to that of UV photoionization,
resulting in a significant weakening of all low-excitation lines. In
contrast, through our consistent inclusion of background line opaci-
ties, we find that radiative excitations through UV line transitions are
effectively quenched, having radiative brackets (the net difference
between in-going and out-going radiative transition rates) that are
effectively zero. We note that Carlsson et al. (1994) found that
photon pumping through UV lines was not important – most likely
this is due to their use of older model atmospheres with gener-
ally flatter temperature structures that produced less superthermal
radiation.

3.5 3D NLTE abundance corrections

Fig. 8 shows 	NLTE for the 670.8-nm line at a representative
abundance A(Li) = 2, for four select values of [Fe/H]. In each
panel, we show results for our 3D hydrodynamic models, as well
as an interpolation based on a method that is explained further in
Section 4.2, to highlight how departures from LTE vary with stellar
parameters.

Overall, we find that 	NLTE tends to become more positive with
increasing Teff and decreasing [Fe/H], but depends only weakly on
log g. At low Teff, the line is sufficiently strong that resonance line
scattering and overrecombination are both important NLTE effects,
together these effects cause the line to increase in strength and
therefore yield lower A(Li). As Teff increases, the line strength and
therefore the effect of resonance line scattering decreases while
at the same time overionization becomes more important. Both
effects lead to a weaker line, and thus more positive 	NLTE.
With decreasing line strength, line formation moves inward toward
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Figure 6. NLTE correction for models with varying Teff, comparing this
work (3D NLTE–1D LTE, solid line with crosses), Lind et al. (2009) (1D
NLTE–1D LTE, dashed line with circles), and Harutyunyan et al. (2018) (3D
NLTE–1D LTE, dotted lines with triangles). All models use [Fe/H] = −1
and A(Li) = 2. We show models with log g = 2.0 (in black) and log g = 4.5
(in blue).

Figure 7. Test calculations illustrating the 1D NLTE abundance correction
(δNLTE) for MARCS models with log g = 4.0, [Fe/H] = −1.0, and A(Li)
= 2.0. Models have been computed using the model atom from Lind et al.
(2009) with background line opacities enabled or disabled for bound-free (b–
f) and line (b–b) transitions of lithium (colours according to figure legend);
results from Lind et al. (2009) are shown for comparison (in blue).

deeper layers, where overionization becomes less important relative
to mutual neutralization (i.e. recombination) through charge transfer,
and the trend therefore turns over when Teff ∼ 6000 K in the most
metal-poor models. At higher [Fe/H], increasing opacities tend to
quench overionization while at the same time higher gas and electron
pressure produce higher collisional rates, both of which lead to
smaller departures from LTE. Variations with log g are very small
due to a cancellation effect: the higher pressure leads to increased
collisional rates and thus more efficient thermalization, as well as a
decreasing ionization fraction which strengthens the resonance line
and may thus increase the effect of resonance scattering.

We stress that while abundance effects driven by equivalent width
differences are a helpful tool to understand departures from LTE and
indeed to quickly apply corrections to existing 1D LTE abundance

analyses, the line shapes themselves also change. As shown in Fig. 3,
while weaker lines often exhibit similar strength in 3D NLTE and 1D
LTE leading to small 	NLTE, saturated and strong lines may differ
dramatically in both equivalent width and shape. Using 	NLTE to
derive 3D NLTE A(Li) may be further hampered by the dependence
of 1D LTE analyses on fudge factors such as αMLT and vmic.

4 INTERPOLATI ON

In this section, we show that straightforward spline interpolation of
our grid of synthetic spectra yields a larger average error in A(Li)
compared to other interpolation methods. We therefore investigate
more involved interpolation methods, in order to provide to the
community a package for accurate abundance analyses based on
our synthetic 3D NLTE spectra computed with the BALDER code:
BREIDABLIK.3

Interpolation for this grid is complicated due to the fact that
Teff is an output rather than input parameter in 3D hydrodynamic
simulations. Therefore, the grid is tabulated at irregular intervals in
this dimension, with values that are slightly different for every log g
and [Fe/H]. As a result, interpolation methods requiring data points at
regular intervals cannot be used out of the box. Additionally, our grid
of model atmospheres has relatively large steps in parameter space
(see Fig. 2), resulting in naturally higher errors in interpolation.

There exist many non-linear interpolation methods which can be
used to predict abundances from an observed spectrum using an
irregular grid. Many of these use inverse modelling, where stellar
parameters are predicted from observed spectra rather than the
other way around. For example, Snider et al. (2001) used artificial
neural networks with back-propagation, and applied this to medium-
resolution spectra to predict stellar parameters; The Gaia Data
Processing and Analysis Consortium uses extremely randomized
trees (Geurts, Ernst & Wehenkel 2006), which is an ensemble method
that predicts stellar parameters on the parameter space spanned by the
training set (Andrae et al. 2018); StarNet uses a convolutional neural
network applied to APOGEE spectra to predict stellar parameters
and 15 elemental abundances in an inverse model (Fabbro et al.
2017); AstroNN similarly uses a Bayesian neural network with
dropout variational inference applied to APOGEE spectra to predict
stellar parameters and 18 elemental abundances, with error estimates
(Leung & Bovy 2019). The Cannon (Ness et al. 2015; Casey et al.
2016; Ho et al. 2016) uses a polynomial model to determine stellar
parameters and elemental abundances from a spectrum. However,
unlike the other models, the Cannon can also be applied to forward
modelling, where it generates a spectrum given stellar parameters and
elemental abundances. Another forward modelling approach is the
Payne (Ting et al. 2019), which uses a fully connected feedforward
neural network to rapidly and accurately predict spectra given stellar
parameters and abundances, followed by a fit to APOGEE spectra to
determine stellar parameters and 20 elemental abundances.

While the inverse models have certain advantages, e.g. in terms
of speed and always returning an answer, forward modelling is
more flexible. For BREIDABLIK, we therefore choose a forward
modelling approach, and provide tools that fit our synthetic spectra
to observations. This has the advantage that our method is not tied
to any particular instrumental setup, but can be implemented as part
of any traditional analysis. It can also be further integrated into more
advanced methodologies, that evaluate systematic errors or advanced
statistics including deriving upper limits to non-detections.

3https://github.com/ellawang44/Breidablik
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3D NLTE line formation of lithium 2167

Figure 8. 3D NLTE–1D LTE abundance corrections (	NLTE) for the 670.8-nm line, shown at a 1D LTE reference abundance of A(Li) = 2. Each panel shows
a different metallicity, from left to right, top to bottom, these are: [Fe/H] = 0, −1, −2, and −4. The circles show the calculated 	NLTE from our models, whilst
the surface shows the predicted 	NLTE which has been interpolated according to Section 4.2.

We investigate the interpolation of both spectral line profiles
and line strengths. The interpolation of spectral line profiles is
subtly different from that of line strengths as they involve the extra
dimension of wavelengths. While line strengths vary smoothly across
stellar parameter space, their shape is more complicated due to
broadening processes and hydrodynamic velocity fields that may
redistribute flux between adjacent wavelength points in a non-linear
way.

We test a number of different interpolation methods for both line
profiles and strengths, and evaluate them using leave-one-out cross-
validation. Hyperparameters for each method are optimized through
five-fold cross-validation, as per standard practice (see chapter 5 of
James et al. 2013; chapter 4 of Kuhn & Johnson 2013), using a
common seed to generate the folds. As spectrum variations across
stellar parameters are more difficult to predict than variations with
A(Li), folds were created based on Teff, log g, and [Fe/H] only. The
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2168 E. Wang et al.

final model is trained using the regular models in the STAGGER grid,
and validated on models tailored to particular stars, that were not
part of the training set. Sections 4.1 and 4.2 discuss interpolating
spectral line profiles and line strengths, respectively, presenting and
comparing the different interpolation methods tested.

4.1 Interpolating spectral line profiles

We test and compare three interpolation methods: spline inter-
polation, the Cannon, and Kriging. Our implementation of the
different methods and the hyperparameters used are described in
Sections 4.1.1–4.1.3.

In order to make the normalized flux easier to interpolate, espe-
cially for very weak lines, we transform it to a quantity that scales
better with abundance. On the weak part of the curve of growth,
the flux depression varies approximately linearly with the number of
absorbers, so we define a transformed flux

ft = log10(1 − f + s), (4)

where f is the normalized flux, and s is a small positive constant
(treated as a hyperparameter) which smoothly truncates ft as the flux
approaches the continuum. Fig. 9 illustrates how the normalized
flux compares to the quantity ft, for two representative values
of s. Importantly, ft varies nearly linearly with A(Li) for small
flux depressions, with a dynamic range controlled by s, before
reaching saturation as the flux approaches zero. Conversely, as the
flux approaches the continuum we find ft = log10s, which helps
avoid numerical noise dominating the model. Test runs where we
interpolate over the normalized flux f tend to incur larger relative
errors when the flux depression is small, corresponding to larger
abundance errors and larger errors in the detailed shape for very
weak lines.

All interpolation methods are trained on all 3 Li lines and on a per
pixel basis.

4.1.1 Spline interpolation

Local polynomial models like spline interpolation are the most
straightforward, and most commonly used in the literature. Due to
the irregular spacing of Teff in our grid of 3D models, we perform
a “training” step following Amarsi et al. (2018), wherein we create
a finer grid with regular steps in stellar parameters Teff, log g and
[Fe/H] using cubic spline interpolation and linear extrapolation. We
then use trilinear interpolation within this finer grid to interpolate
to the exact stellar parameters at each A(Li), and produce the
final spectrum using cubic splines over A(Li). This method uses
only a single hyperparameter, which we optimise to s = 10−9 (see
equation 4).

4.1.2 The Cannon

The Cannon is a global polynomial interpolation method (Ness et al.
2015; Ho et al. 2016). We provide the Cannon with three labels:
Teff, log g, and [Fe/H], training one model per A(Li), then using
cubic spline over A(Li) to compute the final interpolated line profile.
The Cannon is normally trained by applying a χ2 minimization
method to observed data. Since our synthetic data are not stochastic,
it therefore does not carry statistical uncertainties, and as such, we
set the variance in pixel to a constant value. Our hyperparameter test
finds best results when using a third-order polynomial form with 20
terms (including cross-terms) describing the flux in each pixel, and
s = 10−9.

Figure 9. Comparison of the normalized flux and how it varies as a function
of A(Li) (top panel), to the transformed flux ft (middle and bottom panels)
for two different values of the softening parameter s. Solid lines show the
flux at line centre, dashed lines represent a point in the line wing (offset by
−0.03 nm from the core). and the dash-dotted line is the continuum. Models
of different Teff are shown with different colour; all models use log g = 4 and
[Fe/H] = −2.

4.1.3 Kriging

Kriging interpolates by computing the distance-dependent weighted
averages of points in a neighbourhood. We define this neighbourhood
as the entire grid to remove discontinuities. We use the Ordi-
naryKriging3D class from the Python package PyKrige to
interpolate across stellar parameters individually at each A(Li), and
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3D NLTE line formation of lithium 2169

Table 1. Comparison of different interpolation methods used to predict the 670.8-nm line profile, showing their MAD and RMS error statistics in predicting
abundance for leave-one-out cross-validation on the 3D grid, and interpolation and extrapolation tests on a 1D grid. Also shown is the time taken to train the
models for all three Li lines (418 pixels total), and the time it takes to execute the model to produce interpolated line profiles for all three lines with arbitrary
values of Teff, log g, [Fe/H], and A(Li).

Method 3D leave one out 1D interpolation 1D extrapolation Training time (s) Execution time (s)
MAD RMS MAD RMS MAD RMS

Spline 0.046 0.115 0.021 0.060 0.028 0.219 1880 0.0941
The Cannon 0.020 0.029 0.085 0.176 0.062 0.088 11.1 0.138
Kriging 0.014 0.022 0.020 0.038 0.019 0.143 235 5.62

then interpolate over A(Li) by cubic splines to produce the final
spectrum. Our best hyperparameter is s = 10−7.

4.1.4 Errors: 3D leave one out

We summarize the abundance-fitting statistics over the 670.8-nm line
for the three investigated models in Table 1. Our error statistics are
based on the median absolute deviation (MAD) and root mean square
error (RMS) measures.

For spline interpolation, we find that models located near the
edges of the grid incur very large errors that drive a large RMS error
statistic. This is the expected behaviour for spline models, as they
tend to extrapolate poorly. A particular difficulty is the fact that our
grid does not have regular edges, but the upper and lower limits on
Teff vary with log g. In contrast, we find that both The Cannon and
Kriging performs very well on average, and are relatively reliable
also when extrapolating to edge models. We select the interpolation
method with the smallest MAD error statistic, Kriging, to use in
BREIDABLIK. We opt for the MAD statistic rather than the RMS error
as the former is less sensitive to outliers, and more representative of
the typical expected error.

Table 1 shows also representative values for the training time
and execution time for each interpolation method, as executed on a
single CPU core on a modern desktop computer. The training time
represents the execution time required to determine the model with
our optimum set of hyperparameters, and the execution time is the
time required to predict the lithium abundance for a single spectral
line. The Cannon is by far the fastest in terms of training time due to its
use of weighted least-squares fitting and its simple polynomial form.
In comparison, the training time of Kriging and spline interpolation
methods are slower by several orders of magnitude.

4.1.5 Errors: verification models

To verify the validity of the final interpolation models, and to show the
errors expected in practice, we used a verification set of four models
that are not part of the regular STAGGER grid but rather were tailored
to individual stars. The exact line profiles computed with BALDER

for these verification models are compared to the interpolated line
profiles from the three tested interpolation methods in Fig. 10, and
the measured A(Li) using each interpolation method is reported in
Table 2. The interpolated line profiles have a similar shape to the
synthesized profiles and replicates the characteristic asymmetry of
the Li line. Overall, we find that spline interpolation and Kriging
both perform well. Whilst the Cannon has been used successfully in
many different cases, mainly in applications to large sets of empirical
spectra (Ness et al. 2015; Ho et al. 2017; Buder et al. 2018), we note
that the Cannon does not perform as well as other interpolation
methods for our particular data set due to the large span in stellar
parameter space. Compared to Table 1, all verification model errors

are notably smaller than the measured leave-one-out errors. As all
four verification models are located either near regular models or well
inside the grid boundaries, spline, and Kriging perform much better
on the verification models compared to the measured MAD error
statistic in the leave-one-out tests. These verification results indicate
that the final interpolation methods produce consistent results when
compared to the leave-one-out cross-validation errors.

4.1.6 Errors: 1D comprehensive grid

Leave-one-out cross-validation errors presented in Section 4.1.4
likely yields overestimated error estimates. This is because the
effective interpolation step in these tests will be 500 K in Teff, 0.5 dex
in log g and 0.5–1 dex in [Fe/H], while in practice interpolation on the
full grid will require steps of at most 250 K in Teff, 0.25 dex in log g
and 0.25–0.5 dex in [Fe/H]. While the tests on verification models
presented in Section 4.1.5 yield fair estimates of the interpolation
error, they cover only a very limited parameter space. Due to the
large computational cost of creating 3D hydrodynamic simulations,
it is beyond our computational resources to generate additional veri-
fication models that cover the entire parameter space for comparison
to our 3D NLTE calculations. In this section, we present errors from a
more comprehensive grid of verification models based on 1D NLTE
calculations.

We use spectra computed using 1D hydrostatic models that were
computed with the ATMO code, adopting αMLT = 1.5, vmic =
1 km s−1. We train spectrum interpolation models using the same
hyperparameters as were used for our 3D NLTE spectra. We test on
a total of 2000 1D ATMO models with randomly generated values for
Teff and log g, while discrete values of [Fe/H] are selected from the
existing grid, and A(Li) is drawn from a normal distribution with
mean 2.5 and standard deviation 0.3. In total, 1000 of these models
are bounded by the existing grid models, hence are “interpolation”
models; the other 1000 models are not fully bounded by existing grid
models, hence are “extrapolation” models.

The MAD and RMS errors determined for these two samples are
shown in Table 1. We find that spline interpolation performs well
on average on both interpolation and extrapolation, while a small
number of extreme outliers in the extrapolation sample produce
a large RMS error. The Cannon surprisingly performs better on
extrapolation than interpolation, indicating that there are likely small
oscillations in the model. Our preferred model, Kriging, performs
well on both interpolation and extrapolation, again with a small
number of extreme outliers producing a large RMS error in the
extrapolation sample.

4.2 Interpolating line strengths

As a complement to our interpolation of spectral line profiles, we
also provide Python classes in BREIDABLIK to derive abundances
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2170 E. Wang et al.

Figure 10. Comparison of interpolation models with verification models (that were not trained on). The verification models were tailored to specific stars,
indicated by name and stellar parameters: Teff, log g, [Fe/H], and A(Li). Note that the residuals between prediction and verification model have been magnified
by a different amount in each plot.

and abundance corrections based on REWs for all three Li lines. Our
method for providing abundance corrections, 	NLTE, takes as input
stellar parameters and A(Li) measured in 1D LTE. Our method for
providing 3D NLTE abundance measurements, AREW, takes as input
stellar parameters and a REW (equation 1).

We test a total of five interpolation models, including the spline
interpolation, the Cannon and Kriging, presented in Sections 4.1.1–
4.1.3, which are used here with no need for hyperparameters because
the flux transform is not used. We introduce here two additional
interpolation methods: multilayer perceptron (MLP) and support
vector regression (SVR). These methods were also evaluated in

our tests for spectral line interpolation, but we found that due to
limited precision and the random nature of the training procedure,
both methods produce pixel-to-pixel variations that resemble noise
in the line profiles. As a result, MLP and SVR are not considered for
interpolating line profiles.

We note that Mott et al. (2020) present a method similar to our
application of the Cannon, where they use a polynomial fit over Teff,
log g, and A(Li), and derive fitting functions individually at each
value of [Fe/H]. They test their fitting functions on their input data,
and find that errors are typically in the range of 0.020 dex for both
	NLTE and AREW.
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3D NLTE line formation of lithium 2171

Table 2. Error in the predicted A(Li) using line profile interpolation models on verification models (that were not
trained on). The input A(Li) used is shown in the first row, labelled ‘direct synthesis’, while subsequent rows show the
error relative to the reference. The verification models were tailored to specific stars, indicated by name, whose stellar
parameters are given in Fig. 10.

Model Sun HD 140283 Procyon HD 84937
Method

Direct synthesis 1.100 2.000 1.000 2.200

Spline 0.006 0.004 − 0.004 0.007
The Cannon − 0.015 − 0.010 0.026 0.019
Kriging 0.012 0.002 − 0.006 0.009

Table 3. Comparison of different interpolation methods used to predict the abundance correction (	NLTE) and abundance based on equivalent widths (AREW),
for the 670.8-nm line. The columns are the same as in Table 1.

Line strengths Interpolation 3D leave one out 1D interpolation 1D extrapolation Training time (s) Execution time (ms)
MAD RMS MAD RMS MAD RMS

	NLTE Spline 0.040 0.083 0.012 0.139 0.020 0.209 29.3 0.578
The Cannon 0.025 0.041 0.024 0.148 0.027 0.199 0.198 0.002 63

Kriging 0.021 0.037 0.012 0.142 0.012 0.170 0.567 15.1
SVR 0.017 0.027 0.018 0.140 0.014 0.163 27.1 0.119
MLP 0.012 0.020 0.012 0.140 0.011 0.173 2140 0.384

AREW Spline 0.051 0.663 0.026 0.063 0.024 0.202 28.3 0.563
The Cannon 0.038 0.066 0.026 0.057 0.020 0.069 0.273 0.002 09

Kriging 0.013 0.022 0.025 0.046 0.018 0.149 0.552 14.9
SVR 0.018 0.036 0.030 0.056 0.034 0.080 1270 0.170
MLP 0.010 0.014 0.027 0.047 0.015 0.073 133 0.176

4.2.1 Support vector regression

SVRs is a form of support vector machines (Vapnik 1995), that
defines a subset of the training set (the support vectors) which fall
within ε of the geometric margin separating data, using a particular
kernel function to transform the input space. We use the SVR
class (Chang & Lin 2011) from the Python package scikit-learn
(Pedregosa et al. 2011). For 	NLTE, we find best hyperparameters:
the penalty parameter, C = 100; penalty distance, ε = 10−3; and
kernel function, fker = radial basis function (rbf). For AREW, we find
best hyperparameters: C = 5000, ε = 10−5, and fker = rbf.

4.2.2 Multilayer perceptron

MLPs are fully connected feed forward neural networks, that connect
“neurons” in a series of layers through a mixture of linear and non-
linear transforms. We use the MLPRegressor class (Hinton 1990)
from the Python package scikit-learn (Pedregosa et al. 2011). We set
the maximum number of iterations to 105 and the tolerance to 10−6.
For 	NLTE, our best hyperparameters are: number of layers, nl =
2; the number of neurons per layer, n = 900; the L2 penalty, α =
0.1; and the activation function, fact = rectified linear unit (ReLU).
For AREW, the best hyperparameters are nl = 2, n = 350, α = 0.01,
and fact = ReLU.

4.2.3 Errors

We show the fitting statistics MAD and RMS errors of 	NLTE and
AREW models in Table 3. These reported errors are also likely to be
upper bounds on the errors expected from fully trained grids, similar
to Table 1. SVR takes much longer to train over AREW compared to
	NLTE because the training time is sensitive to the hyperparameter,
C, where larger values of C tends to takes longer to train due to

higher numbers of iterations required. MLP takes longer to train over
	NLTE compared to AREW, because the training time is sensitive to
n, as larger n implies a higher number of fitted parameters. Overall,
our preferred method, MLP, produces by far the lowest errors and
executes rapidly.

To verify the validity of the final line strength interpolation
models, we use the same verification set as in Section 4.1. The
exact 	NLTE and 3D NLTE A(Li) computed with BALDER for
these verification models are compared to the interpolated line
strengths from the five tested methods in Table 4. The verification
results for the Cannon, Kriging, SVR, and MLP in Table 4 mostly
matches the results in Table 3. Spline interpolation and Kriging
both perform significantly better for the verification models again
due to the location of the verification models being near regular
models or well inside grid boundaries. These verification results
indicate that the final interpolation models for both 	NLTE and
AREW are consistent with the leave-one-out cross-validation error
statistics.

We also compute errors for the 	NLTE and AREW models on a 1D
comprehensive grid, similar to Section 4.1.6. Since these models
are trained on 1D hydrostatic model atmospheres, the 	NLTE
model takes as input the stellar parameters and 1D LTE A(Li) and
returns δNLTE = 1D NLTE A(Li) - 1D LTE A(Li); whilst the AREW

model takes stellar parameters and REW and outputs 1D NLTE
A(Li). The MAD and RMS errors for these 1000 “interpolation”
and 1000 “extrapolation” models are shown in Table 3. All models
perform well on average for both interpolation and extrapolation, but
extrapolation tends to have more extreme outliers, as seen from the
higher RMS for extrapolation. The 	NLTE models have comparable
MAD and RMS errors between the 3D leave-one-out cross-validation
errors and 1D interpolation and extrapolation errors, with the excep-
tions of spline and the Cannon. Spline and Kriging for the AREW

models have more extreme outliers when extrapolating compared
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Table 4. Error in the predicted abundance correction (	NLTE) and abundance based on equivalent widths (AREW) for
verification models (that were not trained on), based on equivalent widths for the 670.8-nm line. The actual values of
	NLTE and 3D NLTE A(Li) computed for each verification model is shown in the first row labelled ‘direct synthesis’,
while subsequent rows show the errors, as in Table 2.

Line strengths Method Sun HD 140283 Procyon HD 84937
Model

	NLTE Direct synthesis − 0.065 − 0.006 0.040 − 0.026
Spline 0.012 0.021 − 0.036 − 0.004

The Cannon 0.000 0.015 − 0.045 0.005
Kriging 0.045 0.016 0.053 − 0.001

SVR 0.007 0.026 − 0.029 0.005
MLP 0.006 0.019 − 0.041 0.005

AREW Direct synthesis 1.100 2.000 1.000 2.200
Spline 0.000 0.000 − 0.004 0.005

The Cannon − 0.017 − 0.006 0.026 0.016
Kriging 0.011 0.002 − 0.005 0.006

SVR 0.009 − 0.008 − 0.018 0.008
MLP 0.002 − 0.002 − 0.008 0.008

to interpolating; whilst the Cannon, SVR, and MLP have almost
comparable RMS, indicating that they perform better extrapolating
compared to other methods. Overall, our preferred model, MLP, per-
forms well in both interpolation and extrapolation compared to other
models.

Mott et al. (2020) presented polynomial fits with typical errors
of 0.020 dex in both 	NLTE and 3D NLTE REW. We note that
although our errors are similar in magnitude, these errors are not
directly comparable. This is because the parameters range in the Mott
et al. (2020) grid is smaller than ours, and the tests used to derive the
error statistics are also different. We believe a leave-one-out cross-
validation and an additional test on randomly selected models should
be more representative of errors typically seen in real data sets.

In addition, we use MLP to fit the 610.4- and 812.6-nm line.
The hyperparameters, leave-one-out cross-validation errors, and
verification results are provided in Appendix A.

5 D ISCUSSION

As shown in Section 3.4, our NLTE results are quantitatively different
from previous literature, in particular resulting in significantly
more negative abundance corrections. Ordinarily, adjustments to
abundance scales like this are tested through the agreement of
different abundance diagnostics in standard stars. Due to the very low
abundance of lithium, only the resonance line at 670.8 nm is visible in
most stars, and indeed even this line is difficult to measure in the Sun
where the photospheric abundance is depleted by more than 2 dex
relative to the protosolar value (e.g. Asplund et al. 2009). While the
subordinate line at 610.4 nm is inaccessible in the solar spectrum, it
is sometimes possible to measure in spectra of exceptional quality or
when the lithium abundance is strongly enhanced (typically causing
the 670.8-nm line to saturate).

We use a sample of well-studied MSTO stars on the Spite
plateau, with equivalent widths measured from high-quality UVES
spectra with S/N > 400 (Asplund et al. 2006). We also analyse two
benchmark stars with accurately known literature stellar parameters,
HD 140283 (Karovicova et al. 2018) and HD 84937 (Casagrande
et al. 2011; VandenBerg et al. 2014; Amarsi et al. 2016b), and
ESPRESSO spectra with S/N ≈ 2000 (Wang et al., in preparation).
We find good agreement between abundances measured from the
610.4- and 670.8-nm lines as shown in Fig. 11, but note that the

abundance difference between the two lines is unfortunately rather
similar in 3D NLTE and 1D LTE. A small but significant offset is
found at [Fe/H] ≈ −1.0, that implies an overestimated abundance
of the 610.4 -nm line relative to the 670.8-nm line. The average
abundance difference between the two lines is +0.041 ± 0.055 dex
in 3D NLTE, compared to −0.042 ± 0.053 in 1D LTE. We emphasize
that the 610.4 nm feature has an equivalent width of just 0.2 pm, and
the abundance difference could therefore be explained by a minor
unrecognized blend with the strength of the order of 0.05 pm at
[Fe/H] = −1. Curiously, the Fe II 610.45-nm line is located in the
blue wing of the Li I 610.4-nm line and has an equivalent width
of approximately 0.3 pm in the solar spectrum. This is in good
agreement with the predicted strength (using an oscillator strength
from Raassen & Uylings 1998), and should therefore fall very close
to expectations in the metal-poor stars. While this blend was not
included in the spectrum fits by Asplund et al. (2006) due to its
uncertain log gf value, we note that they employed a spectrum fitting
method that primarily relied on the strength of the red (unblended)
wing of the 610.4 nm transition. Assuming the blend did contribute
to the measured equivalent widths, the corrected line strengths
yield an average abundance difference between the two lines of
+0.022 ± 0.049 dex in 3D NLTE, compared to −0.062 ± 0.048 dex
in 1D LTE.

As our 3D NLTE calculations yield overall lower abundance
results than previously, this has important implications for a wide
range of science cases. Differences are less significant for e.g. warm
and metal-poor stars, where background line opacities in UV are
relatively weak. In the measurements presented above, we find for
the 22 Spite plateau stars with accurately known temperatures and
no obvious Li-enrichment, an average 3D NLTE abundance A(Li)
= 2.20 ± 0.05 based on the 670.8-nm resonance line, compared to
our 1D LTE result A(Li) = 2.23 ± 0.06 or the 1D NLTE result of
Asplund et al. (2006), A(Li) = 2.21 ± 0.07. This underscores the
finding of Asplund et al. (2003) that the 3D NLTE Li abundances
in metal-poor halo stars are quite similar to the 1D NLTE and 1D
LTE results due to a fortuitous near cancellation of the 3D and NLTE
effects.

Mucciarelli et al. (2012) performed a commensurate analysis of
RGB stars, where their 1D NLTE abundance (with NLTE corrections
from Carlsson et al. 1994) measurement A(Li) = 0.97 ± 0.06 implies
an initial abundance in these field stars of A(Li)0 = 2.28–2.46, where
the range represents systematic uncertainties related to the choice
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Figure 11. Top panel: Comparison between 3D NLTE A(Li) measurements
of the 610.4- and 670.8-nm lines using UVES and ESPRESSO spectra for
a sample of Spite plateau stars (see the description in text). A representative
systematic error bar due to uncertainties in the stellar parameters is shown in
the bottom right-hand corner. Bottom panel: 3D NLTE abundance corrections
	NLTE (3D NLTE-1D LTE) for the two Li lines.

of temperature scale and stellar evolution models. We revert their
A(Li) to 1D LTE using the abundance corrections from Carlsson
et al. (1994), and then apply our own 	NLTE as described in
Sections 3.5 and 4.2; we note that this procedure is not perfect
since it depends on the difference in LTE results for the two types of
employed 1D model atmospheres (Mucciarelli et al. 2012: Kurucz;
here: ATMO) but for our purposes, it is sufficiently accurate given
the uncertainties in the predicted Li depletion for RGB stars. Our
derived abundances for their stars are significantly lower, at A(Li)
= 0.81 ± 0.06, thereby implying initial abundances in the range
A(Li)0 = 2.12–2.30, in agreement with the Spite plateau value A(Li)
= 2.20 ± 0.05 derived above. This unexpectedly good agreement
could imply that the surface lithium abundance depletion in metal-
poor MSTO stars is mainly caused by destruction rather than non-
destructive deposition. We note, however, that theoretical models
of mass-dependent depletion through gravitational settling predict a
combination of deposition and destruction (Richard et al. 2005) in
good agreement with measurements (e.g. Korn et al. 2007; Lind et al.
2008; Meléndez et al. 2010). The initial lithium abundance recovered
in these cited studies is, however, still significantly lower than the
predicted cosmological abundance level, which opens for additional
destruction mechanisms, on the pre-main sequence or otherwise (see
Fu et al. 2015).

Figure 12. Abundance fit to the solar spectrum in 1D LTE. Our optimum
fit has EW = 0.30 ± 0.02 pm, which yields a 3D NLTE abundance A(Li) =
0.96 ± 0.05 (including systematic errors).

Finally, we have fitted the Hamburg solar flux atlas (Brault &
Neckel 1987; Neckel 1999) using the linelist of Ghezzi et al. (2009)
as well as of Meléndez et al. (2012) in a 1D LTE analysis with
MARCS model atmospheres (Gustafsson et al. 2008). In both cases,
our best fit, shown in Fig. 12, the Li line has a line strength of
EW = 0.30 ± 0.02 pm, which yields a 1D LTE result A(Li) =
0.98 ± 0.03 (statistical error bars) in excellent agreement with
Harutyunyan et al. (2018). This equivalent width corresponds to
a 3D NLTE solar abundance of A(Li) = 0.96 ± 0.05 (the error bar
here includes indicative systematic errors, representing modelling
differences comparing 3D/1D and NLTE/LTE, following Asplund
et al. 2009), which is lower than the value A(Li) = 1.05 ± 0.10
provided in Asplund et al. (2009). It implies that the solar surface Li
abundance is depleted by a factor of 200 relative to the protosolar
value as implied by the CI meteoritic abundance A(Li) = 3.26 ± 0.05
(Lodders, Palme & Gail 2009, renormalized to A(Si) = 7.51 from
Amarsi & Asplund 2017).

6 C O N C L U S I O N S

In this paper, we presented our 3D NLTE grid, covering the full FGK-
type star parameter range, and a broad range in lithium abundances.
We make available our grid alongside a set of interpolation routines
in the BREIDABLIK package. These interpolation routines can be used
to interpolate line profiles to arbitrary stellar parameters using the
Kriging technique, achieving a median absolute error of 0.012 dex;
we interpolate line strengths using MLP, achieving a median absolute
error of 0.012 dex when deriving abundance corrections (	NLTE)
and 0.01 dex when deriving the abundance from an REW (AREW).
In addition, 1D departure coefficients are made available through
Amarsi et al. (2020), and Amarsi (2020).

We have shown the importance of taking into account line blocking
in the solution of the statistical equilibrium, and find significant
differences with respect to previous works. These lower inferred
abundances for all three Li lines may have important implications
for a wide range of science cases. As a demonstration, we redetermine
the lithium abundances in samples of metal-poor MSTO and RGB
stars, and find that our 3D NLTE abundance estimates are lower than
previous 1D NLTE estimates by 0.01 and 0.16 dex, respectively; after
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correcting for the predicted effects of dilution due to dredge-up, we
find that the lithium abundances measured in metal-poor RGB stars
agree well with those measured in the MSTO stars.

In future work, we intend to apply our calculations to varying
isotopic ratios in metal-poor stars, in order to revisit the cosmological
6Li problem (e.g. Smith et al. 1998; Asplund et al. 2006; Lind et al.
2013).
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Collet R., Asplund M., Thévenin F., 2005, A&A, 442, 643
Collet R., Asplund M., Trampedach R., 2006, ApJ, 644, L121
Croft H., Dickinson A. S., Gadea F. X., 1999, MNRAS, 304, 327
Cyburt R. H., Fields B. D., Olive K. A., Yeh T.-H., 2016, Rev. Mod. Phys.,

88, 015004
Delgado Mena E. et al., 2015, A&A, 576, A69
Do Nascimento J. D. J., Castro M., Meléndez J., Bazot M., Théado S., Porto
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A P P E N D I X A : IN T E R P O L AT I O N O F TH E 6 1 0 . 4 -
A N D 8 1 2 . 6 - N M L I N E S

In addition to the line strength models for the 670.8-nm line presented
in the main text, we also developed line strength interpolation models
for both the 610.4- and 812.6-nm lines. In Section 4.2, we found that
the best performing model is MLP for both 	NLTE and AREW,
therefore, we use MLP for these new models. In addition, we use
the same five-fold hyperparameter tuning and verification models as
previously established to develop these new models.

Table A1 tabulates the best hyperparameters found through five-
fold cross-validation. The 	NLTE hyperparameters are similar to the
model presented in Section 4.2.2 whilst the AREW hyperparameters
differ. This is likely due to the dynamic range and shape of the AREW

data set changing more compared to the 	NLTE data set when
changing Li lines.

The leave-one-out cross-validation fitting statistics is shown in
Table A2. We find that the errors are smaller than the models
presented in Section 4.2 because the dynamic range of 	NLTE and
REW for the 610.4 and 812.6-nm lines are smaller than the dynamic
range of the 670.8-nm line. The training and execution time for these
models are comparable to MLP times in Table 3.

The verification results are shown in Table A3. Procyon for the
810.6-nm line is not included as it is immeasurably weak. Overall, for
both 	NLTE and AREW, most errors in verification models fluctuate
around the MAD leave-one-out cross-validation errors. Therefore,
both the 	NLTE and AREW final models for the 610.4- and 810.6-nm
line are consistent with their leave-one-out cross-validation errors.

Table A1. Optimized MLP hyperparameters for 	NLTE and AREW for both
the 610.4- and 810.6- nm line, based on five-fold cross-validation. nl is the
number of layers, n is the number of neurons per layer, α is the L2 parameter,
and fact is the activation function.

Line strengths Li line (nm) nl n α fact

	NLTE 610.4 2 900 10−5 ReLU
812.6 2 850 10−1 ReLU

AREW 610.4 2 750 10−9 ReLU
812.6 2 750 10−2 ReLU

Table A2. Interpolation errors using an MLP model to predict 	NLTE and
AREW for both the 610.4- and 810.6-nm line, based on an average over
leave-one-out cross-validation errors using the 3D grid.

Line strengths Li line (nm) MAD RMS

	NLTE 610.4 0.007 0.010
812.6 0.007 0.011

AREW 610.4 0.006 0.008
812.6 0.007 0.009
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Table A3. Error in predicted 	NLTE and AREW using MLP line strength interpolation models trained on the 610.4 nm and 810.6 lines on verification models
(that were not trained on). The actual 	NLTE and AREW are shown in the direct synthesis. The verification models were tailored to specific stars, indicated by
name. The 810.6-nm line is neglected for Procyon as it is immeasurably weak.

Line strengths Li line (nm) Method Sun HD 140283 Procyon HD 84937
Model

	NLTE 610.4 Direct synthesis 0.021 0.069 0.080 0.057
MLP 0.012 0.016 − 0.022 0.002

810.6 Direct synthesis 0.001 0.060 0.039
MLP 0.009 0.015 0.011

AREW 610.4 Direct synthesis 1.100 2.000 1.000 2.200
MLP 0.003 − 0.002 0.001 0.003

810.6 Direct synthesis 1.100 2.000 2.200
MLP − 0.004 0.004 0.009
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