38 research outputs found
Characterizing the impact of urban emissions on regional aerosol particles: airborne measurements during the MEGAPOLI experiment
The MEGAPOLI (Megacities: Emissions, urban, regional and Global
Atmospheric POLlution and climate effects, and Integrated tools for
assessment and mitigation) experiment took place in July 2009. The aim of this campaign
was to study the aging and reactions of aerosol and gas-phase emissions in
the city of Paris. Three ground-based measurement sites and several mobile
platforms including instrument equipped vehicles and the ATR-42 aircraft
were involved. We present here the variations in particle- and gas-phase
species over the city of Paris, using a combination of high-time resolution
measurements aboard the ATR-42 aircraft. Particle chemical composition was
measured using a compact time-of-flight aerosol mass spectrometer (C-ToF-AMS), giving detailed information on the non-refractory submicron
aerosol species. The mass concentration of black carbon (BC), measured by a
particle absorption soot photometer (PSAP), was used as a marker to identify
the urban pollution plume boundaries. Aerosol mass concentrations and
composition were affected by air-mass history, with air masses that spent
longest time over land having highest fractions of organic aerosol and
higher total mass concentrations. The Paris plume is mainly composed of
organic aerosol (OA), BC, and nitrate aerosol, as well as high
concentrations of anthropogenic gas-phase species such as toluene, benzene,
and NO<sub>x</sub>. Using BC and CO as tracers for air-mass dilution, we observe
the ratio of ÎOA / ÎBC and ÎOA / ÎCO increase
with increasing photochemical age (âlog(NO<sub>x</sub> / NO<sub>y</sub>)). Plotting the
equivalent ratios of different organic aerosol species (LV-OOA, SV-OOA, and
HOA) illustrate that the increase in OA is a result of secondary organic
aerosol (SOA) formation. Within Paris the changes in the ÎOA / ΔCO are similar to those observed during other studies in London, Mexico
City, and in New England, USA. Using the measured SOA volatile organic compounds (VOCs) species together
with organic aerosol formation yields, we were able to predict ~50% of
the measured organics. These airborne measurements during the MEGAPOLI
experiment show that urban emissions contribute to the formation of OA and
have an impact on aerosol composition on a regional scale
Intracranial stimulation for children with epilepsy
OBJECTIVES: To evaluate the efficacy of intracranial stimulation to treat refractory epilepsy in children. METHODS: This is a retrospective analysis of a pilot study on all 8 children who had intracranial electrical stimulation for the investigation and treatment of refractory epilepsy at King's College Hospital between 2014 and 2015. Five children (one with temporal lobe epilepsy and four with frontal lobe epilepsy) had subacute cortical stimulation (SCS) for a period of 20-161Â h during intracranial video-telemetry. Efficacy of stimulation was evaluated by counting interictal discharges and seizures. Two children had thalamic deep brain stimulation (DBS) of the centromedian nucleus (one with idiopathic generalized epilepsy, one with presumed symptomatic generalized epilepsy), and one child on the anterior nucleus (right fronto-temporal epilepsy). The incidence of interictal discharges was evaluated visually and quantified automatically. RESULTS: Among the three children with DBS, two had >60% improvement in seizure frequency and severity and one had no improvement. Among the five children with SCS, four showed improvement in seizure frequency (>50%) and one chid did not show improvement. Procedures were well tolerated by children. CONCLUSION: Cortical and thalamic stimulation appear to be effective and well tolerated in children with refractory epilepsy. SCS can be used to identify the focus and predict the effects of resective surgery or chronic cortical stimulation. Further larger studies are necessary
Altimetry for the future: Building on 25 years of progress
In 2018 we celebrated 25 years of development of radar altimetry, and the progress achieved by this methodology in the fields of global and coastal oceanography, hydrology, geodesy and cryospheric sciences. Many symbolic major events have celebrated these developments, e.g., in Venice, Italy, the 15th (2006) and 20th (2012) years of progress and more recently, in 2018, in Ponta Delgada, Portugal, 25 Years of Progress in Radar Altimetry. On this latter occasion it was decided to collect contributions of scientists, engineers and managers involved in the worldwide altimetry community to depict the state of altimetry and propose recommendations for the altimetry of the future. This paper summarizes contributions and recommendations that were collected and provides guidance for future mission design, research activities, and sustainable operational radar altimetry data exploitation. Recommendations provided are fundamental for optimizing further scientific and operational advances of oceanographic observations by altimetry, including requirements for spatial and temporal resolution of altimetric measurements, their accuracy and continuity. There are also new challenges and new openings mentioned in the paper that are particularly crucial for observations at higher latitudes, for coastal oceanography, for cryospheric studies and for hydrology. The paper starts with a general introduction followed by a section on Earth System Science including Ocean Dynamics, Sea Level, the Coastal Ocean, Hydrology, the Cryosphere and Polar Oceans and the âGreenâ Ocean, extending the frontier from biogeochemistry to marine ecology. Applications are described in a subsequent section, which covers Operational Oceanography, Weather, Hurricane Wave and Wind Forecasting, Climate projection. Instrumentsâ development and satellite missionsâ evolutions are described in a fourth section. A fifth section covers the key observations that altimeters provide and their potential complements, from other Earth observation measurements to in situ data. Section 6 identifies the data and methods and provides some accuracy and resolution requirements for the wet tropospheric correction, the orbit and other geodetic requirements, the Mean Sea Surface, Geoid and Mean Dynamic Topography, Calibration and Validation, data accuracy, data access and handling (including the DUACS system). Section 7 brings a transversal view on scales, integration, artificial intelligence, and capacity building (education and training). Section 8 reviews the programmatic issues followed by a conclusion
CSF Rhinorrhea After Endonasal Intervention to the Skull Base (CRANIAL) â Part 2:Impact of COVID-19
Background During the pandemic, there has been a concern about the increased risk of perioperative mortality for patients with COVID-19, and the transmission risk to healthcare workers, particularly during endonasal neurosurgical operations. The Pituitary Society produced recommendations to guide management during this era. We sought to assess contemporary neurosurgical practice and the impact of COVID-19. Methods A multicentre, prospective, observational cohort study was conducted at twelve tertiary neurosurgical units (UK and Ireland). Data were collected from March 23rd-July 31st, 2020 inclusive. Data points collected were patient demographics, pre-operative COVID-19 testing, intra-operative operative modifications, and 30-day COVID infection rates. Results 124 patients were included. 116 patients (n=116/124, 94%) underwent COVID-19 testing pre-operatively (TSA: 97/105, 92%; EEA: 19/19, 100%). One patient (n=1/115, 1%) tested positively for COVID-19 pre-operatively, requiring a delay of operation until the infection was confirmed as resolved. Asides from transient diabetes insipidus; no other complications were reported for this case. All theatre staff wore at least level 2 PPE. Adaptations to surgical techniques included minimising drilling, draping modifications, and using nasal iodine wash. At 30 days postoperatively, there was no evidence of COVID infection (symptoms or on formal testing) in our cohort, and no mortality. Conclusions Preoperative screening protocols and operative modifications have facilitated endonasal neurosurgery during the COVID-19 pandemic, with Pituitary Society guidelines followed for the majority of these operations. There was no evidence of COVID infection in our cohort, and no mortality, supporting the use of risk mitigation strategies to continue endonasal neurosurgery in subsequent pandemic waves
CSF Rhinorrhoea After Endonasal Intervention to the Skull Base (CRANIAL) - Part 1: Multicenter Pilot Study
Background:
CRANIAL (CSF Rhinorrhoea After Endonasal Intervention to the Skull Base) is a prospective, multicentre observational study seeking to determine: (1) the scope of skull base repair methods used; and (2) corresponding rates of postoperative CSF rhinorrhoea in endonasal transsphenoidal (TSA) expanded endonasal approaches (EEA) for skull base tumours. We sought to pilot the project - assessing the feasibility and acceptability by gathering preliminary data. /
Methods:
A prospective, observational cohort pilot study was carried out at twelve tertiary UK neurosurgical units. Feedback regarding project positives and challenges were qualitatively analysed. /
Results:
187 cases were included, 159 TSA (85%) and 28 EEA (15%). The most common pathologies included: pituitary adenomas (n=141/187), craniopharyngiomas (n=13/187) and skull-base meningiomas (n=4/187). The most common skull base repair techniques used were tissue glues (n=132/187, most commonly TisseelÂź), grafts (n=94/187, most commonly fat autograft or Spongostanâą) and vascularised flaps (n=51/187, most commonly nasoseptal). These repairs were most frequently supported by nasal packs (n=125/187) and lumbar drains (n=22/187). Biochemically-confirmed CSF rhinorrhoea occurred in 6/159 (3.8%) TSA and 2/28 (7.1%) EEA. Four TSA (3%) and two EEA (7%) cases required operative management for CSF rhinorrhoea (CSF diversion or direct repair). Qualitative feedback was largely positive (themes included: user-friendly and efficient data collection, strong support from senior team members) demonstrating acceptability. /
Conclusions:
Our pilot experience highlights the acceptability and feasibility of CRANIAL. There is a precedent for multicentre dissemination of this project, in order to establish a benchmark of contemporary skull base neurosurgery practice, particularly with respect to EEA cases
CSF Rhinorrhoea After Endonasal Intervention to the Skull Base (CRANIAL) - Part 1:Multicenter Pilot Study
Background CRANIAL (CSF Rhinorrhoea After Endonasal Intervention to the Skull Base) is a prospective, multicentre observational study seeking to determine: (1) the scope of skull base repair methods used; and (2) corresponding rates of postoperative CSF rhinorrhoea in endonasal transsphenoidal (TSA) expanded endonasal approaches (EEA) for skull base tumours. We sought to pilot the project - assessing the feasibility and acceptability by gathering preliminary data. Methods A prospective, observational cohort pilot study was carried out at twelve tertiary UK neurosurgical units. Feedback regarding project positives and challenges were qualitatively analysed. Results 187 cases were included, 159 TSA (85%) and 28 EEA (15%). The most common pathologies included: pituitary adenomas (n=141/187), craniopharyngiomas (n=13/187) and skull-base meningiomas (n=4/187). The most common skull base repair techniques used were tissue glues (n=132/187, most commonly TisseelÂź), grafts (n=94/187, most commonly fat autograft or Spongostanâą) and vascularised flaps (n=51/187, most commonly nasoseptal). These repairs were most frequently supported by nasal packs (n=125/187) and lumbar drains (n=22/187). Biochemically-confirmed CSF rhinorrhoea occurred in 6/159 (3.8%) TSA and 2/28 (7.1%) EEA. Four TSA (3%) and two EEA (7%) cases required operative management for CSF rhinorrhoea (CSF diversion or direct repair). Qualitative feedback was largely positive (themes included: user-friendly and efficient data collection, strong support from senior team members) demonstrating acceptability. Conclusions Our pilot experience highlights the acceptability and feasibility of CRANIAL. There is a precedent for multicentre dissemination of this project, in order to establish a benchmark of contemporary skull base neurosurgery practice, particularly with respect to EEA cases. Keywords Cerebrospinal fluid rhinorrhoeaCSFCerebrospinal fluid leakskull base surgeryendoscopic endonasalEE
Protocol for the development of a multidisciplinary clinical practice guideline for the care of patients with chronic subdural haematoma
Introduction: A common neurosurgical condition, chronic subdural haematoma (cSDH) typically affects older people with other underlying health conditions. The care of this potentially vulnerable cohort is often, however, fragmented and suboptimal. In other complex conditions, multidisciplinary guidelines have transformed patient experience and outcomes, but no such framework exists for cSDH. This paper outlines a protocol to develop the first comprehensive multidisciplinary guideline from diagnosis to long-term recovery with cSDH. Methods: The project will be guided by a steering group of key stakeholders and professional organisations and will feature patient and public involvement. Multidisciplinary thematic working groups will examine key aspects of care to formulate appropriate, patient-centered research questions, targeted with evidence review using the GRADE framework. The working groups will then formulate draft clinical recommendations to be used in a modified Delphi process to build consensus on guideline contents. Conclusions: We present a protocol for the development of a multidisciplinary guideline to inform the care of patients with a cSDH, developed by cross-disciplinary working groups and arrived at through a consensus-building process, including a modified online Delphi
In situ sensing of the middle atmosphere with balloonborne near-infrared laser diodes
International audienceSince 1997, two near-infrared laser diode sensors have been developed with the support of the CNES, the French space agency, to provide in situ data of H 2O, CH 4 and CO 2 in the middle atmosphere. The realized instruments were flown from stratospheric balloons within the framework of European campaigns for the study of stratospheric ozone and water vapor and were involved in the validation of the ODIN and ENVISAT satellites. In this paper, we describe the developed laser probing technique, we report atmospheric measurements and finally we discuss future perspectives, particularly the in situ laser sensing of the lower atmosphere of Mars and the implication of the laser hygrometers in balloon campaigns at mid-latitudes and tropical regions to investigate the sources and sinks of stratospheric H 2O