3,586 research outputs found

    Superscaling and neutral current quasielastic neutrino-nucleus scattering

    Get PDF
    The superscaling approach is applied to studies of neutral current neutrino reactions in the quasielastic regime. Using input from scaling analyses of electron scattering data, predictions for high-energy neutrino and antineutrino cross sections are given and compared with results obtained using the relativistic Fermi gas model. The influence of strangeness content inside the nucleons in the nucleus is also explored.Comment: 28 pages, 8 figures, accepted for publication in Phys.Rev.

    Radiative pion capture in nuclei: a continuum shell-model approach

    Get PDF
    The radiative pion capture process in nuclei is approached by using a continuum shell-model description of the nucleus, together with a phenomenological treatment of the two particle-two hole effects. It is found that these effects play an important role to reproduce the observed experimental photon energy distribution. This distribution as well as the integrated one depends significantly on the details of the mean field potential. This makes this process interesting to investigate the nuclear structure dynamics.Comment: 21 pages, LateX file + 5 figures, epsf.st

    Analysis of Meson Exchange and Isobar Currents in (e,e'p) Reactions from O-16

    Get PDF
    An analysis of the effects of meson exchange and isobar currents in exclusive (e,e'p) processes from O-16 under quasi-free kinematics is presented. A model that has probed its feasibility for inclusive quasi-elastic (e,e') processes is considered. Sensitivity to final state interactions between the outgoing proton and the residual nucleus is discussed by comparing the results obtained with phenomenological optical potentials and a continuum nuclear shell-model calculation. The contribution of the meson-exchange and isobar currents to the response functions is evaluated and compared to previous calculations, which differ notably from our results. These two-body contributions cannot solve the puzzle of the simultaneous description of the different responses experimentally separated. Copyright 1999 by The American Physical SocietyComment: 5 pages, plus 3 PS figures. To be published in Phys. Rev. C Updated figure

    Equivalence between local Fermi gas and shell models in inclusive muon capture from nuclei

    Get PDF
    Motivated by recent studies of inclusive neutrino nucleus processes and muon capture within a correlated local Fermi gas model (LFG), we discuss the relevance of nuclear finite size effects in these reactions at low energy, in particular for muon capture. To disentangle these effects from others coming from the reaction dynamics we employ here a simple uncorrelated shell model that embodies the typical finite size content of the problem. The integrated decay widths of muon atoms calculated with this shell model are then compared for several nuclei with those obtained within the uncorrelated LFG, using in both models exactly the same theoretical ingredients and parameters. We find that the two predictions are in quite good agreement, within 1--7%, when the shell model density and the correct energy balance is used as input in the LFG calculation. The present study indicates that, despite the low excitation energies involved in the reaction, integrated inclusive observables, like the total muon capture width, are quite independent of the fine details of the nuclear wave functions.Comment: 11 pages, 8 figures. Final version to be published in EPJ

    Local Fermi gas in inclusive muon capture from nuclei

    Get PDF
    We compare local Fermi gas and shell model in muon capture in nuclei in order to estimate the effect of finite nuclear size in low energy weak reactions.Comment: 6 pages, 8 figures. To be published in the Proceedings of 20th Max Born Symposium, Wroclaw (Poland), December 7-10, 200

    Using Electron Scattering Superscaling to predict Charge-changing Neutrino Cross Sections in Nuclei

    Get PDF
    Superscaling analyses of few-GeV inclusive electron scattering from nuclei are extended to include not only quasielastic processes, but now also into the region where Δ\Delta-excitation dominates. It is shown that, with reasonable assumptions about the basic nuclear scaling function extracted from data and information from other studies of the relative roles played by correlation and MEC effects, the residual strength in the resonance region can be accounted for through an extended scaling analysis. One observes scaling upon assuming that the elementary cross section by which one divides the residual to obtain a new scaling function is dominated by the NΔN\to\Delta transition and employing a new scaling variable which is suited to the resonance region. This yields a good representation of the electromagnetic response in both the quasielastic and Δ\Delta regions. The scaling approach is then inverted and predictions are made for charge-changing neutrino reactions at energies of a few GeV, with focus placed on nuclei which are relevant for neutrino oscillation measurements. For this a relativistic treatment of the required weak interaction vector and axial-vector currents for both quasielastic and Δ\Delta-excitation processes is presented.Comment: 42 pages, 9 figures, accepted for publication in Physical Review

    Induced Nucleon Polarization and Meson-Exchange Currents in (e,e'p) Reactions

    Get PDF
    Nucleon recoil polarization observables in (e,ep)(e,e'\vec{p}) reactions are investigated using a semi-relativistic distorted-wave model which includes one- and two-body currents with relativistic corrections. Results for the induced polarization asymmetry are shown for closed-shell nuclei and a comparison with available experimental data for 12^{12}C is provided. A careful analysis of meson exchange currents shows that they may affect significantly the induced polarization for high missing momentum.Comment: 7 pages, 9 figures. Revised version with small changes, new curve in Fig. 3. To be published in PR
    corecore