1,941 research outputs found

    Analysis of Meson Exchange and Isobar Currents in (e,e'p) Reactions from O-16

    Get PDF
    An analysis of the effects of meson exchange and isobar currents in exclusive (e,e'p) processes from O-16 under quasi-free kinematics is presented. A model that has probed its feasibility for inclusive quasi-elastic (e,e') processes is considered. Sensitivity to final state interactions between the outgoing proton and the residual nucleus is discussed by comparing the results obtained with phenomenological optical potentials and a continuum nuclear shell-model calculation. The contribution of the meson-exchange and isobar currents to the response functions is evaluated and compared to previous calculations, which differ notably from our results. These two-body contributions cannot solve the puzzle of the simultaneous description of the different responses experimentally separated. Copyright 1999 by The American Physical SocietyComment: 5 pages, plus 3 PS figures. To be published in Phys. Rev. C Updated figure

    Nuclear effects in charged-current quasielastic neutrino-nucleus scattering

    Get PDF
    After a short review of the recent developments in studies of neutrino-nucleus interactions, the predictions for double-differential and integrated charged current-induced quasielastic cross sections are presented within two different relativistic approaches: one is the so-called SuSA method, based on the superscaling behavior exhibited by electron scattering data; the other is a microscopic model based on relativistic mean field theory, and incorporating final-state interactions. The role played by the meson-exchange currents in the two-particle two-hole sector is explored and the results are compared with the recent MiniBooNE data.Comment: 12 pages, 9 figures, to appear in the Proceedings of "XIII Convegno di Cortona su Problemi di Fisica Nucleare Teorica", Cortona (Italy), April 6-8, 201

    Meson Exchange Currents in (e,e'p) recoil polarization observables

    Get PDF
    A study of the effects of meson-exchange currents and isobar configurations in A(e,ep)BA(\vec{e},e'\vec{p})B reactions is presented. We use a distorted wave impulse approximation (DWIA) model where final-state interactions are treated through a phenomenological optical potential. The model includes relativistic corrections in the kinematics and in the electromagnetic one- and two-body currents. The full set of polarized response functions is analyzed, as well as the transferred polarization asymmetry. Results are presented for proton knock-out from closed-shell nuclei, for moderate to high momentum transfer.Comment: 44 pages, 18 figures. Added physical arguments explaining the dominance of OB over MEC, and a summary of differences with previous MEC calculations. To be published in PR

    Neutrino and antineutrino CCQE scattering in the SuperScaling Approximation from MiniBooNE to NOMAD energies

    Get PDF
    We compare the predictions of the SuperScaling model for charged current quasielastic muonic neutrino and antineutrino scattering from 12^{12}C with experimental data spanning an energy range up to 100 GeV. We discuss the sensitivity of the results to different parametrizations of the nucleon vector and axial-vector form factors. Finally, we show the differences between electron and muon (anti-)neutrino cross sections relevant for the ν\nuSTORM facility.Comment: 14 pages, 7 figures; v2: small corrections in the text and two added references; version accepted for publication by Phys. Lett.

    A study of the structure of jet turbulence producing jet noise

    Get PDF
    Characteristics of turbulent structure of mixing region near outlet of circular subsonic jet and production of jet nois

    Effects of Short-Range Correlations in (e,e'p) reactions and nuclear overlap functions

    Full text link
    A study of the effects of short-range correlations over the (e,e'p) reaction for low missing energy in closed shell nuclei is presented. We use correlated, quasi-hole overlap functions extracted from the asymptotic behavior of the one-body density matrix, containing central correlations of Jastrow type, up to first-order in a cluster expansion, and computed in the very high asymptotic region, up to 100 fm. The method to extract the overlap functions is checked in a simple shell model, where the exact results are known. We find that the single-particle wave functions of the valence shells are shifted to the right due to the short-range repulsion by the nuclear core. The corresponding spectroscopic factors are reduced only a few percent with respect to the shell model. However, the (e,e'p) response functions and cross sections are enhanced in the region of the maximum of the missing momentum distribution due to short-range correlations.Comment: 45 pages, 15 figure

    The frozen nucleon approximation in two-particle two-hole response functions

    Get PDF
    We present a fast and efficient method to compute the inclusive two-particle two-hole (2p-2h) electroweak responses in the neutrino and electron quasielastic inclusive cross sections. The method is based on two approximations. The first neglects the motion of the two initial nucleons below the Fermi momentum, which are considered to be at rest. This approximation, which is reasonable for high values of the momentum transfer, turns out also to be quite good for moderate values of the momentum transfer qkFq\gtrsim k_F. The second approximation involves using in the "frozen" meson-exchange currents (MEC) an effective Δ\Delta-propagator averaged over the Fermi sea. Within the resulting "frozen nucleon approximation", the inclusive 2p-2h responses are accurately calculated with only a one-dimensional integral over the emission angle of one of the final nucleons, thus drastically simplifying the calculation and reducing the computational time. The latter makes this method especially well-suited for implementation in Monte Carlo neutrino event generators.Comment: 8 pages, 5 figures and 1 tabl

    Two-nucleon emission in neutrino and electron scattering from nuclei: the modified convolution approximation

    Full text link
    The theoretical formalism of inclusive lepton-nucleus scattering in the two-nucleon emission channel is discussed in the context of a simplified approach, the modified convolution approximation. This allows one to write the 2p2h responses of the relativistic Fermi gas as a folding integral of two 1p1h responses with the energies and momenta transferred to each nucleon. The idea behind this method is to introduce different average momenta for the two initial nucleons in the matrix elements of the two-body current, with the innovation that they depend on the transferred energies and momenta. This method treats exactly the two-body phase space kinematics, and reduces the formulae of the response functions from seven-dimensional integrals over momenta to much simpler three-dimensional ones. The applicability of the method is checked by comparing with the full results within a model of electroweak meson-exchange currents. The predictions are accurate enough, especially in the low-energy threshold region where the average momentum approximation works the best.Comment: 35 pages, 13 figure

    Quaiselastic scattering from relativistic bound nucleons: Transverse-Longitudinal response

    Get PDF
    Predictions for electron induced proton knockout from the p1/2p_{1/2} and p3/2p_{3/2} shells in 16^{16}O are presented using various approximations for the relativistic nucleonic current. Results for the differential cross section, transverse-longitudinal response (RTLR_{TL}) and left-right asymmetry ATLA_{TL} are compared at Q2=0.8|Q^2|=0.8 (GeV/c)2^2 corresponding to TJNAF experiment 89-003. We show that there are important dynamical and kinematical relativistic effects which can be tested by experiment.Comment: 10 pages, including 2 figures. Removed preliminary experimental data from the figure

    Semi-relativistic description of quasielastic neutrino reactions and superscaling in a continuum shell model

    Get PDF
    The so-called semi-relativistic expansion of the weak charged current in powers of the initial nucleon momentum is performed to describe charge-changing, quasielastic neutrino reactions (νμ,μ)(\nu_\mu,\mu^-) at intermediate energies. The quality of the expansion is tested by comparing with the relativistic Fermi gas model using several choices of kinematics of interest for ongoing neutrino oscillation experiments. The new current is then implemented in a continuum shell model together with relativistic kinematics to investigate the scaling properties of (e,e)(e,e') and (νμ,μ)(\nu_\mu,\mu^-) cross sections.Comment: 33 pages, 10 figures, to appear in PR
    corecore