1,941 research outputs found
Analysis of Meson Exchange and Isobar Currents in (e,e'p) Reactions from O-16
An analysis of the effects of meson exchange and isobar currents in exclusive
(e,e'p) processes from O-16 under quasi-free kinematics is presented. A model
that has probed its feasibility for inclusive quasi-elastic (e,e') processes is
considered. Sensitivity to final state interactions between the outgoing proton
and the residual nucleus is discussed by comparing the results obtained with
phenomenological optical potentials and a continuum nuclear shell-model
calculation. The contribution of the meson-exchange and isobar currents to the
response functions is evaluated and compared to previous calculations, which
differ notably from our results. These two-body contributions cannot solve the
puzzle of the simultaneous description of the different responses
experimentally separated. Copyright 1999 by The American Physical SocietyComment: 5 pages, plus 3 PS figures. To be published in Phys. Rev. C Updated
figure
Nuclear effects in charged-current quasielastic neutrino-nucleus scattering
After a short review of the recent developments in studies of
neutrino-nucleus interactions, the predictions for double-differential and
integrated charged current-induced quasielastic cross sections are presented
within two different relativistic approaches: one is the so-called SuSA method,
based on the superscaling behavior exhibited by electron scattering data; the
other is a microscopic model based on relativistic mean field theory, and
incorporating final-state interactions. The role played by the meson-exchange
currents in the two-particle two-hole sector is explored and the results are
compared with the recent MiniBooNE data.Comment: 12 pages, 9 figures, to appear in the Proceedings of "XIII Convegno
di Cortona su Problemi di Fisica Nucleare Teorica", Cortona (Italy), April
6-8, 201
Meson Exchange Currents in (e,e'p) recoil polarization observables
A study of the effects of meson-exchange currents and isobar configurations
in reactions is presented. We use a distorted wave
impulse approximation (DWIA) model where final-state interactions are treated
through a phenomenological optical potential. The model includes relativistic
corrections in the kinematics and in the electromagnetic one- and two-body
currents. The full set of polarized response functions is analyzed, as well as
the transferred polarization asymmetry. Results are presented for proton
knock-out from closed-shell nuclei, for moderate to high momentum transfer.Comment: 44 pages, 18 figures. Added physical arguments explaining the
dominance of OB over MEC, and a summary of differences with previous MEC
calculations. To be published in PR
Neutrino and antineutrino CCQE scattering in the SuperScaling Approximation from MiniBooNE to NOMAD energies
We compare the predictions of the SuperScaling model for charged current
quasielastic muonic neutrino and antineutrino scattering from C with
experimental data spanning an energy range up to 100 GeV. We discuss the
sensitivity of the results to different parametrizations of the nucleon vector
and axial-vector form factors. Finally, we show the differences between
electron and muon (anti-)neutrino cross sections relevant for the STORM
facility.Comment: 14 pages, 7 figures; v2: small corrections in the text and two added
references; version accepted for publication by Phys. Lett.
A study of the structure of jet turbulence producing jet noise
Characteristics of turbulent structure of mixing region near outlet of circular subsonic jet and production of jet nois
Effects of Short-Range Correlations in (e,e'p) reactions and nuclear overlap functions
A study of the effects of short-range correlations over the (e,e'p) reaction
for low missing energy in closed shell nuclei is presented. We use correlated,
quasi-hole overlap functions extracted from the asymptotic behavior of the
one-body density matrix, containing central correlations of Jastrow type, up to
first-order in a cluster expansion, and computed in the very high asymptotic
region, up to 100 fm. The method to extract the overlap functions is checked in
a simple shell model, where the exact results are known. We find that the
single-particle wave functions of the valence shells are shifted to the right
due to the short-range repulsion by the nuclear core. The corresponding
spectroscopic factors are reduced only a few percent with respect to the shell
model. However, the (e,e'p) response functions and cross sections are enhanced
in the region of the maximum of the missing momentum distribution due to
short-range correlations.Comment: 45 pages, 15 figure
The frozen nucleon approximation in two-particle two-hole response functions
We present a fast and efficient method to compute the inclusive two-particle
two-hole (2p-2h) electroweak responses in the neutrino and electron
quasielastic inclusive cross sections. The method is based on two
approximations. The first neglects the motion of the two initial nucleons below
the Fermi momentum, which are considered to be at rest. This approximation,
which is reasonable for high values of the momentum transfer, turns out also to
be quite good for moderate values of the momentum transfer . The
second approximation involves using in the "frozen" meson-exchange currents
(MEC) an effective -propagator averaged over the Fermi sea. Within the
resulting "frozen nucleon approximation", the inclusive 2p-2h responses are
accurately calculated with only a one-dimensional integral over the emission
angle of one of the final nucleons, thus drastically simplifying the
calculation and reducing the computational time. The latter makes this method
especially well-suited for implementation in Monte Carlo neutrino event
generators.Comment: 8 pages, 5 figures and 1 tabl
Two-nucleon emission in neutrino and electron scattering from nuclei: the modified convolution approximation
The theoretical formalism of inclusive lepton-nucleus scattering in the
two-nucleon emission channel is discussed in the context of a simplified
approach, the modified convolution approximation. This allows one to write the
2p2h responses of the relativistic Fermi gas as a folding integral of two 1p1h
responses with the energies and momenta transferred to each nucleon. The idea
behind this method is to introduce different average momenta for the two
initial nucleons in the matrix elements of the two-body current, with the
innovation that they depend on the transferred energies and momenta. This
method treats exactly the two-body phase space kinematics, and reduces the
formulae of the response functions from seven-dimensional integrals over
momenta to much simpler three-dimensional ones. The applicability of the method
is checked by comparing with the full results within a model of electroweak
meson-exchange currents. The predictions are accurate enough, especially in the
low-energy threshold region where the average momentum approximation works the
best.Comment: 35 pages, 13 figure
Quaiselastic scattering from relativistic bound nucleons: Transverse-Longitudinal response
Predictions for electron induced proton knockout from the and
shells in O are presented using various approximations for the
relativistic nucleonic current. Results for the differential cross section,
transverse-longitudinal response () and left-right asymmetry
are compared at (GeV/c) corresponding to TJNAF experiment
89-003. We show that there are important dynamical and kinematical relativistic
effects which can be tested by experiment.Comment: 10 pages, including 2 figures. Removed preliminary experimental data
from the figure
Semi-relativistic description of quasielastic neutrino reactions and superscaling in a continuum shell model
The so-called semi-relativistic expansion of the weak charged current in
powers of the initial nucleon momentum is performed to describe
charge-changing, quasielastic neutrino reactions at
intermediate energies. The quality of the expansion is tested by comparing with
the relativistic Fermi gas model using several choices of kinematics of
interest for ongoing neutrino oscillation experiments. The new current is then
implemented in a continuum shell model together with relativistic kinematics to
investigate the scaling properties of and cross
sections.Comment: 33 pages, 10 figures, to appear in PR
- …