4,255 research outputs found

    Functional cartography of complex metabolic networks

    Full text link
    High-throughput techniques are leading to an explosive growth in the size of biological databases and creating the opportunity to revolutionize our understanding of life and disease. Interpretation of these data remains, however, a major scientific challenge. Here, we propose a methodology that enables us to extract and display information contained in complex networks. Specifically, we demonstrate that one can (i) find functional modules in complex networks, and (ii) classify nodes into universal roles according to their pattern of intra- and inter-module connections. The method thus yields a ``cartographic representation'' of complex networks. Metabolic networks are among the most challenging biological networks and, arguably, the ones with more potential for immediate applicability. We use our method to analyze the metabolic networks of twelve organisms from three different super-kingdoms. We find that, typically, 80% of the nodes are only connected to other nodes within their respective modules, and that nodes with different roles are affected by different evolutionary constraints and pressures. Remarkably, we find that low-degree metabolites that connect different modules are more conserved than hubs whose links are mostly within a single module.Comment: 17 pages, 4 figures. Go to http://amaral.northwestern.edu for the PDF file of the reprin

    Point-Coupling Models from Mesonic Hypermassive Limit and Mean-Field Approaches

    Get PDF
    In this work we show how nonlinear point-coupling models, described by a Lagrangian density that presents only terms up to fourth order in the fermion condensate (ψˉψ)(\bar{\psi}\psi), are derived from a modified meson-exchange nonlinear Walecka model. The derivation can be done through two distinct methods, namely, the hypermassive meson limit within a functional integral approach, and the mean-field approximation in which equations of state at zero temperature of the nonlinear point-coupling models are directly obtained.Comment: 18 pages. Accepted for publication in Braz. J. Phy

    Languages cool as they expand: Allometric scaling and the decreasing need for new words

    Get PDF
    We analyze the occurrence frequencies of over 15 million words recorded in millions of books published during the past two centuries in seven different languages. For all languages and chronological subsets of the data we confirm that two scaling regimes characterize the word frequency distributions, with only the more common words obeying the classic Zipf law. Using corpora of unprecedented size, we test the allometric scaling relation between the corpus size and the vocabulary size of growing languages to demonstrate a decreasing marginal need for new words, a feature that is likely related to the underlying correlations between words. We calculate the annual growth fluctuations of word use which has a decreasing trend as the corpus size increases, indicating a slowdown in linguistic evolution following language expansion. This ‘‘cooling pattern’’ forms the basis of a third statistical regularity, which unlike the Zipf and the Heaps law, is dynamical in nature

    Low pH immobilizes and kills human leukocytes and prevents transmission of cell-associated HIV in a mouse model

    Get PDF
    BACKGROUND: Both cell-associated and cell-free HIV virions are present in semen and cervical secretions of HIV-infected individuals. Thus, topical microbicides may need to inactivate both cell-associated and cell-free HIV to prevent sexual transmission of HIV/AIDS. To determine if the mild acidity of the healthy vagina and acid buffering microbicides would prevent transmission by HIV-infected leukocytes, we measured the effect of pH on leukocyte motility, viability and intracellular pH and tested the ability of an acidic buffering microbicide (BufferGel(Âź)) to prevent the transmission of cell-associated HIV in a HuPBL-SCID mouse model. METHODS: Human lymphocyte, monocyte, and macrophage motilities were measured as a function of time and pH using various acidifying agents. Lymphocyte and macrophage motilities were measured using video microscopy. Monocyte motility was measured using video microscopy and chemotactic chambers. Peripheral blood mononuclear cell (PBMC) viability and intracellular pH were determined as a function of time and pH using fluorescent dyes. HuPBL-SCID mice were pretreated with BufferGel, saline, or a control gel and challenged with HIV-1-infected human PBMCs. RESULTS: Progressive motility was completely abolished in all cell types between pH 5.5 and 6.0. Concomitantly, at and below pH 5.5, the intracellular pH of PBMCs dropped precipitously to match the extracellular medium and did not recover. After acidification with hydrochloric acid to pH 4.5 for 60 min, although completely immotile, 58% of PBMCs excluded ethidium homodimer-1 (dead-cell dye). In contrast, when acidified to this pH with BufferGel, a microbicide designed to maintain vaginal acidity in the presence of semen, only 4% excluded dye at 10 min and none excluded dye after 30 min. BufferGel significantly reduced transmission of HIV-1 in HuPBL-SCID mice (1 of 12 infected) compared to saline (12 of 12 infected) and a control gel (5 of 7 infected). CONCLUSION: These results suggest that physiologic or microbicide-induced acid immobilization and killing of infected white blood cells may be effective in preventing sexual transmission of cell-associated HIV

    Plasma glucose regulation and insulin secretion in hypertriglyceridemic mice

    Get PDF
    In this study, we examined glucose homeostasis and insulin secretion in transgenic mice overexpressing the human apolipoprotein CIII gene (apo CIII tg). These mice have elevated plasma levels of triglycerides, FFA and cholesterol compared to control mice. The body weight, plasma glucose, and insulin levels, glucose disappearance rates, areas under the ipGTT curve for adult (4-8 mo. old) and aged (20-24 mo. old) apo CIII tg mice and the determination of insulin during the ipGTT were riot different from those of control mice. However, an additional elevation of plasma FFA by treatment with heparin for 2-4h impaired the ipGTT responses in apo CIII tg mice compared to saline-treated mice. The glucose disappearance rate in heparin-treated transgenic mice was slightly lower than in heparin-treated controls. Glucose (22.2 mmol/l) stimulated insulin secretion in isolated islets to the same extent in saline-treated control and apo CIII tg mice. in islets from heparin-treated apo CIII tg mice, the insulin secretion at 2.8 and 22.2 mmol glucose/l was lower than in heparin-treated control mice. In conclusion, hypertriglyceridemia per se or a mild elevation in FFA did not affect insulin secretion or insulin resistance in adult or aged apo CIII tg mice. Nonetheless, an additional elevation of FFA induced by heparin in hypertriglyceridemic mice impaired the ipGTT by reducing insulin secretion.341212

    A method for studying protistan diversity using massively parallel sequencing of V9 hypervariable regions of small-subunit ribosomal RNA genes

    Get PDF
    © 2009 The Authors. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS ONE 4 (2009): e6372, doi:10.1371/journal.pone.0006372.Massively parallel pyrosequencing of amplicons from the V6 hypervariable regions of small-subunit (SSU) ribosomal RNA (rRNA) genes is commonly used to assess diversity and richness in bacterial and archaeal populations. Recent advances in pyrosequencing technology provide read lengths of up to 240 nucleotides. Amplicon pyrosequencing can now be applied to longer variable regions of the SSU rRNA gene including the V9 region in eukaryotes. We present a protocol for the amplicon pyrosequencing of V9 regions for eukaryotic environmental samples for biodiversity inventories and species richness estimation. The International Census of Marine Microbes (ICoMM) and the Microbial Inventory Research Across Diverse Aquatic Long Term Ecological Research Sites (MIRADA-LTERs) projects are already employing this protocol for tag sequencing of eukaryotic samples in a wide diversity of both marine and freshwater environments. Massively parallel pyrosequencing of eukaryotic V9 hypervariable regions of SSU rRNA genes provides a means of estimating species richness from deeply-sampled populations and for discovering novel species from the environment.This work was supported by grants from the W.M. Keck Foundation and the Woods Hole Center for Oceans and Human Health from the National Institutes of Health and National Science Foundation (NIH/NIEHS 1 P50 ES012742-01 and NSF/OCE 0430724-J) (LAZ and SH)

    Therapeutic Rescue of Misfolded Mutants: Validation of Primary High Throughput Screens for Identification of Pharmacoperone Drugs

    Get PDF
    Functional rescue of misfolded mutant receptors by small non-peptide molecules has been demonstrated. These small, target-specific molecules (pharmacological chaperones or "pharmacoperones") serve as molecular templates, promote correct folding and allow otherwise misfolded mutants to pass the scrutiny of the cellular quality control system (QCS) and be expressed at the plasma membrane (PM) where they function similarly to wild type (WT) proteins. In the case of the gonadotropin releasing hormone receptor (GnRHR), drugs that rescue one mutant typically rescue many mutants, even if the mutations are located at distant sites (extracellular loops, intracellular loops, transmembrane helices). This increases the value of these drugs. These drugs are typically identified, post hoc, from "hits" in screens designed to detect antagonists or agonists. The therapeutic utility of pharmacoperones has been limited due to the absence of screens that enable identification of pharmacoperones per se.We describe a generalizable primary screening approach for pharmacoperone drugs based on measurement of gain of activity in stable HeLa cells stably expressing the mutants of two different model G-protein coupled receptors (GPCRs) (hGnRHR[E(90)K] or hV2R[L(83)Q]). These cells turn off expression of the receptor mutant gene of interest in the presence of tetracycline and its analogs, which provides a convenient means to identify false positives.The methods described and characterized here provide the basis of novel primary screens for pharmacoperones that detect drugs that rescue GPCR mutants of specific receptors. This approach will identify structures that would have been missed in screens that were designed to select only agonists or antagonists. Non-antagonistic pharmacoperones have a therapeutic advantage since they will not compete for endogenous agonists and may not have to be washed out once rescue has occurred and before activation by endogenous or exogenous agonists
    • 

    corecore