103 research outputs found

    Synaptonemal complex analysis of the sex bivalent in goats

    Get PDF
    Synaptonemal complex (SC) analysis of XY pairing in the goat (Capra hircus; 2n = 60) was investigated by electron microscopy for the first time in this species. Synapsis of the X and Y chromosomes begins during the mid-late zygotene stage as the autosomes complete their pairing. Only a small portion of the total length of the Y is paired with the X chromosome at this time. By the early pachytene, almost 90% of the Y is paired with the X. All the observed stages of the sex bivalent pairing showed the structural difference between the differential and pairing regions. In the pairing region, a synaptonemal complex is formed, while in the differential region the chromosome axes remain free

    Synaptonemal complex analysis in goats carrying the 5/15 Robertsonian translocation

    Get PDF
    Synaptonemal complexes were analysed by electron microscopy in 2 bucks heterozygous for the 5/15 Robertsonian translocation. The cis configuration (free homologous 5 and 15 chromosomes on the same side of the 5/15 translocated chromosome) was found in all 50 cells examined. This feature is considered a prerequisite for the development of balanced gametes. No association between the sex bivalent and trivalent was observed

    Detecting rich-club ordering in complex networks

    Full text link
    Uncovering the hidden regularities and organizational principles of networks arising in physical systems ranging from the molecular level to the scale of large communication infrastructures is the key issue for the understanding of their fabric and dynamical properties [1-5]. The ``rich-club'' phenomenon refers to the tendency of nodes with high centrality, the dominant elements of the system, to form tightly interconnected communities and it is one of the crucial properties accounting for the formation of dominant communities in both computer and social sciences [4-8]. Here we provide the analytical expression and the correct null models which allow for a quantitative discussion of the rich-club phenomenon. The presented analysis enables the measurement of the rich-club ordering and its relation with the function and dynamics of networks in examples drawn from the biological, social and technological domains.Comment: 1 table, 3 figure

    Functional cartography of complex metabolic networks

    Full text link
    High-throughput techniques are leading to an explosive growth in the size of biological databases and creating the opportunity to revolutionize our understanding of life and disease. Interpretation of these data remains, however, a major scientific challenge. Here, we propose a methodology that enables us to extract and display information contained in complex networks. Specifically, we demonstrate that one can (i) find functional modules in complex networks, and (ii) classify nodes into universal roles according to their pattern of intra- and inter-module connections. The method thus yields a ``cartographic representation'' of complex networks. Metabolic networks are among the most challenging biological networks and, arguably, the ones with more potential for immediate applicability. We use our method to analyze the metabolic networks of twelve organisms from three different super-kingdoms. We find that, typically, 80% of the nodes are only connected to other nodes within their respective modules, and that nodes with different roles are affected by different evolutionary constraints and pressures. Remarkably, we find that low-degree metabolites that connect different modules are more conserved than hubs whose links are mostly within a single module.Comment: 17 pages, 4 figures. Go to http://amaral.northwestern.edu for the PDF file of the reprin

    Structural efficiency of percolation landscapes in flow networks

    Get PDF
    Complex networks characterized by global transport processes rely on the presence of directed paths from input to output nodes and edges, which organize in characteristic linked components. The analysis of such network-spanning structures in the framework of percolation theory, and in particular the key role of edge interfaces bridging the communication between core and periphery, allow us to shed light on the structural properties of real and theoretical flow networks, and to define criteria and quantities to characterize their efficiency at the interplay between structure and functionality. In particular, it is possible to assess that an optimal flow network should look like a "hairy ball", so to minimize bottleneck effects and the sensitivity to failures. Moreover, the thorough analysis of two real networks, the Internet customer-provider set of relationships at the autonomous system level and the nervous system of the worm Caenorhabditis elegans --that have been shaped by very different dynamics and in very different time-scales--, reveals that whereas biological evolution has selected a structure close to the optimal layout, market competition does not necessarily tend toward the most customer efficient architecture.Comment: 8 pages, 5 figure

    Evolution of Cooperation and Coordination in a Dynamically Networked Society

    Get PDF
    Situations of conflict giving rise to social dilemmas are widespread in society and game theory is one major way in which they can be investigated. Starting from the observation that individuals in society interact through networks of acquaintances, we model the co-evolution of the agents' strategies and of the social network itself using two prototypical games, the Prisoner's Dilemma and the Stag Hunt. Allowing agents to dismiss ties and establish new ones, we find that cooperation and coordination can be achieved through the self-organization of the social network, a result that is non-trivial, especially in the Prisoner's Dilemma case. The evolution and stability of cooperation implies the condensation of agents exploiting particular game strategies into strong and stable clusters which are more densely connected, even in the more difficult case of the Prisoner's Dilemma.Comment: 18 pages, 14 figures. to appea

    Characterization of PRLR and PPARGC1A genes in buffalo (Bubalus bubalis)

    Get PDF
    More than 40 million households in India depend at least partially on livestock production. Buffaloes are one of the major milk producers in India. The prolactin receptor (PRLR) gene and peroxisome proliferators activated receptor-γ coactivator 1-alpha (PPARGC1A) gene are reportedly associated with milk protein and milk fat yields in Bos taurus. In this study, we sequenced the PRLR and PPARGC1A genes in the water buffalo Bubalus bubalis. The PRLR and PPARGC1A genes coded for 581 and 819 amino acids, respectively. The B. bubalis PRLR gene differed from the corresponding Bos taurus at 21 positions and four differences with an additional arginine at position 620 in the PPARGC1A gene were found in the amino acid sequence. All of the changes were confirmed by cDNA sequencing. Twelve buffalo-specific single nucleotide polymorphisms (SNPs) were identified in both genes, with five of them being non-synonymous

    Self-similarity of complex networks

    Full text link
    Complex networks have been studied extensively due to their relevance to many real systems as diverse as the World-Wide-Web (WWW), the Internet, energy landscapes, biological and social networks \cite{ab-review,mendes,vespignani,newman,amaral}. A large number of real networks are called ``scale-free'' because they show a power-law distribution of the number of links per node \cite{ab-review,barabasi1999,faloutsos}. However, it is widely believed that complex networks are not {\it length-scale} invariant or self-similar. This conclusion originates from the ``small-world'' property of these networks, which implies that the number of nodes increases exponentially with the ``diameter'' of the network \cite{erdos,bollobas,milgram,watts}, rather than the power-law relation expected for a self-similar structure. Nevertheless, here we present a novel approach to the analysis of such networks, revealing that their structure is indeed self-similar. This result is achieved by the application of a renormalization procedure which coarse-grains the system into boxes containing nodes within a given "size". Concurrently, we identify a power-law relation between the number of boxes needed to cover the network and the size of the box defining a finite self-similar exponent. These fundamental properties, which are shown for the WWW, social, cellular and protein-protein interaction networks, help to understand the emergence of the scale-free property in complex networks. They suggest a common self-organization dynamics of diverse networks at different scales into a critical state and in turn bring together previously unrelated fields: the statistical physics of complex networks with renormalization group, fractals and critical phenomena.Comment: 28 pages, 12 figures, more informations at http://www.jamlab.or

    Degree correlations in directed scale-free networks

    Get PDF
    Scale-free networks, in which the distribution of the degrees obeys a power-law, are ubiquitous in the study of complex systems. One basic network property that relates to the structure of the links found is the degree assortativity, which is a measure of the correlation between the degrees of the nodes at the end of the links. Degree correlations are known to affect both the structure of a network and the dynamics of the processes supported thereon, including the resilience to damage, the spread of information and epidemics, and the efficiency of defence mechanisms. Nonetheless, while many studies focus on undirected scale-free networks, the interactions in real-world systems often have a directionality. Here, we investigate the dependence of the degree correlations on the power-law exponents in directed scale-free networks. To perform our study, we consider the problem of building directed networks with a prescribed degree distribution, providing a method for proper generation of power-law-distributed directed degree sequences. Applying this new method, we perform extensive numerical simulations, generating ensembles of directed scale-free networks with exponents between~2 and~3, and measuring ensemble averages of the Pearson correlation coefficients. Our results show that scale-free networks are on average uncorrelated across directed links for three of the four possible degree-degree correlations, namely in-degree to in-degree, in-degree to out-degree, and out-degree to out-degree. However, they exhibit anticorrelation between the number of outgoing connections and the number of incoming ones. The findings are consistent with an entropic origin for the observed disassortativity in biological and technological networks.Comment: 10 pages, 5 figure
    corecore