105 research outputs found

    Formation of C-C and C-Heteroatom Bonds by C-H Activation by Metal Organic Frameworks as Catalysts or Supports

    Full text link
    "This document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Catalysis, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acscatal.8b04506"[EN] Cross-coupling reactions catalyzed by transition metals are currently among the most widely used transformations in organic synthesis. In most of these reactions, the coupling involves the reaction of two complementary functional groups, particularly boronates and halides. For the sake of atom economy and simplicity of the starting materials, it is more advantageous when the coupling involves C-H activation of one substrate lacking a reactive functional group. The present review focuses on the use of metal organic frameworks (MOFs) as solid reusable catalysts to promote cross-coupling reactions involving C-H activation. After general considerations, the review is organized according to the bond formed in the coupling, either C-C or C-heteroatom (N, O, B and X). The purpose of this mini review is to show the performance of MOFs as heterogeneous catalysts in these reactions, combining a high activity due to the large percentage of accessible metal sites and high stability allowing the reuse of the material in consecutive cycles. Comparison with homogeneous analogous catalysts indicates that this improved performance derives from the porosity, large surface area and site isolation and immobilization occurring in the MOFs. Considering the growing interests in these reactions the last section forecasts future developments in these areas in near future.A.D. thanks the University Grants Commission, New Delhi, for the award of an Assistant Professorship under its Faculty Recharge Programme. A.D. also thanks the Department of Science and Technology, India, for the financial support through Extra Mural Research Funding (EMR/2016/006500). Financial support by the Spanish Ministry of Economy and Competitiveness (Severo Ochoa and CTQ2015-69153-CO2-1) and Generalitat Valenciana (Prometeo 2017-083) is gratefully acknowledged.Dhakshinamoorthy, A.; Asiri, A.; García Gómez, H. (2019). Formation of C-C and C-Heteroatom Bonds by C-H Activation by Metal Organic Frameworks as Catalysts or Supports. ACS Catalysis. 9(2):1081-1102. https://doi.org/10.1021/acscatal.8b04506S108111029

    Metal Organic Frameworks as Versatile Hosts of Au Nanoparticles in Heterogeneous Catalysis

    Full text link
    [EN] The present review describes the state of the art of the use of metal organic framework (MOF)-encapsulated Au nanoparticles (NPs) as heterogeneous catalysts. The purpose is to show that catalysts with very good performance, frequently among the most active Au catalysts reported so far, can be obtained by incorporation of Au NPs inside MOFs. The available data indicate that the high catalytic activity of MOF-encapsulated Au NPs derives from (i) small particle size, (ii) high dispersion and homogeneous distribution inside MOFs crystals, (iii) stabilization of particle size by confinement of Au NPs inside MOFs cages, and (iv) the synergy that can arise by the combination of the activity of Au NPs and MOFs. After some introductory sections presenting general issues commenting about the relevance of Au catalysis, how to determine the internal versus external location of Au NPs, and evidence in support for catalyst stability, this mini review covers reactions using Au@MOFs as catalysts for oxidations, reductions, tandem processes, and photocatalysis with the emphasis in providing a comparison with the performance of other alternative Au-containing catalysts. In the final section, we summarize in our view the current achievements and which are the next targets in this area.A.D.M. thanks University Grants Commission, New Delhi for the award of Assistant Professorship under its Faculty Recharge Programme. A.D.M. also thanks Department of Science and Technology, India, for the financial support through Fast Track project (SB/FT/CS-166/2013) and the Generalidad Valenciana for financial aid supporting his stay at Valencia through the Prometeo programme. Financial support by the Spanish Ministry of Economy and Competitiveness (CTQ-2015-69153-CO2-R1 and Severo Ochoa) and Generalidad Valenciana (Prometeo 2013-014) is gratefully acknowledged.Dhakshinamoorthy, A.; Asiri, AM.; García Gómez, H. (2017). Metal Organic Frameworks as Versatile Hosts of Au Nanoparticles in Heterogeneous Catalysis. ACS Catalysis. 7(4):2896-2919. https://doi.org/10.1021/acscatal.6b03386S289629197

    Metal organic frameworks as heterogeneous catalysts for the production of fine chemicals

    Full text link
    [EN] This review focuses on the use of metal organic frameworks (MOFs) as catalysts for the synthesis of fine chemicals. While petrochemistry is characterized by gas phase reactions, in which MOFs cannot compete with robust zeolites, MOFs are better suited for liquid phase reactions performed at moderate temperatures. These are the conditions typically employed for the production of fine chemicals characterized by being more complex and diverse molecules of low volatility, but with high added value. For the preparation of this type of compound, MOFs offer the advantage of wide open porosity in the nanometer scale and a large void volume. In the present review we have summarized the reports that appeared up to early 2013 on the use of MOFs as catalysts in the liquid phase for the production of fine chemicals, primarily classified according to the type of active site and the functional group formed in the reaction. Prospects for future development in this field are provided in the last section.A.D.M. thanks University Grants Commission (UGC), New Delhi, for the award of Assistant Professorship under its Faculty Recharge Programme. Financial support by the Spanish DGI (CTQ-2012-32315 and Severo Ochoa) is gratefully acknowledged. The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 228862. J.C.. thanks the Czech Grant Agency for financial support (Centre of Excellence - P106/12/G015).Dhakshinamoorthy, A.; Opanasenko, M.; Cejka, J.; García Gómez, H. (2013). Metal organic frameworks as heterogeneous catalysts for the production of fine chemicals. Catalysis Science and Technology. 3(10):2509-2540. https://doi.org/10.1039/c3cy00350gS2509254031

    Metal organic frameworks as catalysts in solvent-free or ionic liquid assisted conditions

    Full text link
    [EN] Metal organic frameworks (MOFs) are being intensively studied as solid catalysts for organic reactions in liquid media. This review focuses on those reports in which these materials have been used as catalysts in the absence of solvents or embedding ionic liquids (ILs). One of the major roles of solvents in liquid phase reactions is to desorb reagents and products from the active sites, facilitating the turnover of the active sites. For this reason, it is a general observation that most solid catalysts undergo strong deactivation and poisoning in the absence of solvents. In the present review, examples are presented showing that, due to their large porosity and framework flexibility, MOFs can be used as catalysts in the absence of solvents for several reaction types including cyanosilylations, condensations, cyloadditions and CO2 insertions, among others, and that they show even better performance than in the presence of conventional organic solvents. This review also describes the synergy that arises from the combination of ILs, frequently with suitable task-specific chains, and MOFs due to the cooperation with the catalysis when two centres in MOF and ionic liquid are present and due to the change in the microenvironment of the active sites. By embedding an ionic liquid in the MOF pores or by synthesising the ionic liquid covalently attached to the ligand in satellite positions, reusable and efficient catalysts requiring the minimum amount of ionic liquid can be obtained. Both complementary strategies increase the greenness of MOFs as heterogeneous catalysts and have advantages from the environmental point of view. Finally, the last section describes the catalytic activity of hierarchical porous MOFs in some selected reactions.AD thanks the University Grants Commission (UGC), New Delhi, for the award of an Assistant Professorship under its Faculty Recharge Programme. AD also thanks the Department of Science and Technology, India, for financial support through Extra Mural Research Funding (EMR/2016/006500). Financial support by the Spanish Ministry of Economy and Competitiveness (Severo Ochoa and CTQ2015-69153-CO2-1) is gratefully acknowledged.Dhakshinamoorthy, A.; Asiri, AM.; Alvaro Rodríguez, MM.; García Gómez, H. (2018). Metal organic frameworks as catalysts in solvent-free or ionic liquid assisted conditions. Green Chemistry. 20(1):86-107. https://doi.org/10.1039/C7GC02260CS86107201Sheldon, R. A. (2012). Fundamentals of green chemistry: efficiency in reaction design. Chem. Soc. Rev., 41(4), 1437-1451. doi:10.1039/c1cs15219jClark, J. H., Luque, R., & Matharu, A. S. (2012). Green Chemistry, Biofuels, and Biorefinery. Annual Review of Chemical and Biomolecular Engineering, 3(1), 183-207. doi:10.1146/annurev-chembioeng-062011-081014Cernansky, R. (2015). Chemistry: Green refill. Nature, 519(7543), 379-380. doi:10.1038/nj7543-379aSanderson, K. (2011). Chemistry: It’s not easy being green. Nature, 469(7328), 18-20. doi:10.1038/469018aPoliakoff, M., & Licence, P. (2007). Green chemistry. Nature, 450(7171), 810-812. doi:10.1038/450810aClark, J. H. (1999). Green chemistry: challenges and opportunities. Green Chemistry, 1(1), 1-8. doi:10.1039/a807961gLiu, J., Chen, L., Cui, H., Zhang, J., Zhang, L., & Su, C.-Y. (2014). Applications of metal–organic frameworks in heterogeneous supramolecular catalysis. Chem. Soc. Rev., 43(16), 6011-6061. doi:10.1039/c4cs00094cGascon, J., Corma, A., Kapteijn, F., & Llabrés i Xamena, F. X. (2013). Metal Organic Framework Catalysis: Quo vadis? ACS Catalysis, 4(2), 361-378. doi:10.1021/cs400959kDhakshinamoorthy, A., Asiri, A. M., & Garcia, H. (2015). Metal–organic frameworks catalyzed C–C and C–heteroatom coupling reactions. Chemical Society Reviews, 44(7), 1922-1947. doi:10.1039/c4cs00254gStock, N., & Biswas, S. (2011). Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites. Chemical Reviews, 112(2), 933-969. doi:10.1021/cr200304eLu, W., Wei, Z., Gu, Z.-Y., Liu, T.-F., Park, J., Park, J., … Zhou, H.-C. (2014). Tuning the structure and function of metal–organic frameworks via linker design. Chem. Soc. Rev., 43(16), 5561-5593. doi:10.1039/c4cs00003jFoo, M. L., Matsuda, R., & Kitagawa, S. (2013). Functional Hybrid Porous Coordination Polymers. Chemistry of Materials, 26(1), 310-322. doi:10.1021/cm402136zJiang, J., & Yaghi, O. M. (2015). Brønsted Acidity in Metal–Organic Frameworks. Chemical Reviews, 115(14), 6966-6997. doi:10.1021/acs.chemrev.5b00221Zhu, L., Liu, X.-Q., Jiang, H.-L., & Sun, L.-B. (2017). Metal–Organic Frameworks for Heterogeneous Basic Catalysis. Chemical Reviews, 117(12), 8129-8176. doi:10.1021/acs.chemrev.7b00091Dhakshinamoorthy, A., & Garcia, H. (2012). Catalysis by metal nanoparticles embedded on metal–organic frameworks. Chemical Society Reviews, 41(15), 5262. doi:10.1039/c2cs35047eDhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2011). Metal–organic frameworks as heterogeneous catalysts for oxidation reactions. Catalysis Science & Technology, 1(6), 856. doi:10.1039/c1cy00068cDhakshinamoorthy, A., Asiri, A. M., & Garcia, H. (2016). Metal-Organic Frameworks as Catalysts for Oxidation Reactions. Chemistry - A European Journal, 22(24), 8012-8024. doi:10.1002/chem.201505141Chughtai, A. H., Ahmad, N., Younus, H. A., Laypkov, A., & Verpoort, F. (2015). Metal–organic frameworks: versatile heterogeneous catalysts for efficient catalytic organic transformations. Chemical Society Reviews, 44(19), 6804-6849. doi:10.1039/c4cs00395kZhao, D., Wu, M., Kou, Y., & Min, E. (2002). Ionic liquids: applications in catalysis. Catalysis Today, 74(1-2), 157-189. doi:10.1016/s0920-5861(01)00541-7Welton, T. (2004). Ionic liquids in catalysis. Coordination Chemistry Reviews, 248(21-24), 2459-2477. doi:10.1016/j.ccr.2004.04.015Pârvulescu, V. I., & Hardacre, C. (2007). Catalysis in Ionic Liquids. Chemical Reviews, 107(6), 2615-2665. doi:10.1021/cr050948hFujie, K., & Kitagawa, H. (2016). Ionic liquid transported into metal–organic frameworks. Coordination Chemistry Reviews, 307, 382-390. doi:10.1016/j.ccr.2015.09.003Bhunia, A., Dey, S., Moreno, J. M., Diaz, U., Concepcion, P., Van Hecke, K., … Van Der Voort, P. (2016). A homochiral vanadium–salen based cadmium bpdc MOF with permanent porosity as an asymmetric catalyst in solvent-free cyanosilylation. Chemical Communications, 52(7), 1401-1404. doi:10.1039/c5cc09459cAguirre-Díaz, L. M., Iglesias, M., Snejko, N., Gutiérrez-Puebla, E., & Monge, M. Á. (2013). Indium metal–organic frameworks as catalysts in solvent-free cyanosilylation reaction. CrystEngComm, 15(45), 9562. doi:10.1039/c3ce41123kAguirre-Díaz, L. M., Iglesias, M., Snejko, N., Gutiérrez-Puebla, E., & Monge, M. Á. (2015). Toward understanding the structure–catalyst activity relationship of new indium MOFs as catalysts for solvent-free ketone cyanosilylation. RSC Advances, 5(10), 7058-7065. doi:10.1039/c4ra13924kZhang, L.-J., Han, C.-Y., Dang, Q.-Q., Wang, Y.-H., & Zhang, X.-M. (2015). Solvent-free heterogeneous catalysis for cyanosilylation in a modified sodalite-type Cu(ii)-MOF. RSC Advances, 5(31), 24293-24298. doi:10.1039/c4ra16350hD’Vries, R. F., Iglesias, M., Snejko, N., Gutiérrez-Puebla, E., & Monge, M. A. (2012). Lanthanide Metal–Organic Frameworks: Searching for Efficient Solvent-Free Catalysts. Inorganic Chemistry, 51(21), 11349-11355. doi:10.1021/ic300816rJiang, W., Yang, J., Liu, Y.-Y., Song, S.-Y., & Ma, J.-F. (2017). A Stable Porphyrin-Based Porous mog Metal–Organic Framework as an Efficient Solvent-Free Catalyst for C–C Bond Formation. Inorganic Chemistry, 56(5), 3036-3043. doi:10.1021/acs.inorgchem.6b03174Liu, F., Xu, Y., Zhao, L., Zhang, L., Guo, W., Wang, R., & Sun, D. (2015). Porous barium–organic frameworks with highly efficient catalytic capacity and fluorescence sensing ability. Journal of Materials Chemistry A, 3(43), 21545-21552. doi:10.1039/c5ta03680aThimmaiah, M., Li, P., Regati, S., Chen, B., & Zhao, J. C.-G. (2012). Multi-component synthesis of 2-amino-6-(alkylthio)pyridine-3,5-dicarbonitriles using Zn(II) and Cd(II) metal–organic frameworks (MOFs) under solvent-free conditions. Tetrahedron Letters, 53(36), 4870-4872. doi:10.1016/j.tetlet.2012.06.139Rostamnia, S., & Morsali, A. (2014). Basic isoreticular nanoporous metal–organic framework for Biginelli and Hantzsch coupling: IRMOF-3 as a green and recoverable heterogeneous catalyst in solvent-free conditions. RSC Advances, 4(21), 10514. doi:10.1039/c3ra46709kRostamnia, S., & Xin, H. (2014). Basic isoreticular metal-organic framework (IRMOF-3) porous nanomaterial as a suitable and green catalyst for selective unsymmetrical Hantzsch coupling reaction. Applied Organometallic Chemistry, 28(5), 359-363. doi:10.1002/aoc.3136Saikia, M., Bhuyan, D., & Saikia, L. (2015). Keggin type phosphotungstic acid encapsulated chromium (III) terephthalate metal organic framework as active catalyst for Biginelli condensation. Applied Catalysis A: General, 505, 501-506. doi:10.1016/j.apcata.2015.05.021Beheshti, S., & Morsali, A. (2014). Post-modified anionic nano-porous metal–organic framework as a novel catalyst for solvent-free Michael addition reactions. RSC Advances, 4(70), 37036. doi:10.1039/c4ra05226aNagaraj, A., & Amarajothi, D. (2017). Cu3(BTC)2 as a viable heterogeneous solid catalyst for Friedel-Crafts alkylation of indoles with nitroalkenes. Journal of Colloid and Interface Science, 494, 282-289. doi:10.1016/j.jcis.2017.01.091Beheshti, S., & Morsali, A. (2014). Post-synthetic cation exchange in anionic metal–organic frameworks; a novel strategy for increasing the catalytic activity in solvent-free condensation reactions. RSC Adv., 4(79), 41825-41830. doi:10.1039/c4ra08142kLi, P., Regati, S., Huang, H., Arman, H. D., Zhao, J. C.-G., & Chen, B. (2015). A metal–organic framework as a highly efficient and reusable catalyst for the solvent-free 1,3-dipolar cycloaddition of organic azides to alkynes. Inorganic Chemistry Frontiers, 2(1), 42-46. doi:10.1039/c4qi00148fLi, P., Regati, S., Huang, H.-C., Arman, H. D., Chen, B.-L., & Zhao, J. C.-G. (2015). A sulfonate-based Cu(I) metal-organic framework as a highly efficient and reusable catalyst for the synthesis of propargylamines under solvent-free conditions. Chinese Chemical Letters, 26(1), 6-10. doi:10.1016/j.cclet.2014.10.022Zalomaeva, O. V., Chibiryaev, A. M., Kovalenko, K. A., Kholdeeva, O. A., Balzhinimaev, B. S., & Fedin, V. P. (2013). Cyclic carbonates synthesis from epoxides and CO2 over metal–organic framework Cr-MIL-101. Journal of Catalysis, 298, 179-185. doi:10.1016/j.jcat.2012.11.029Zhou, X., Zhang, Y., Yang, X., Zhao, L., & Wang, G. (2012). Functionalized IRMOF-3 as efficient heterogeneous catalyst for the synthesis of cyclic carbonates. Journal of Molecular Catalysis A: Chemical, 361-362, 12-16. doi:10.1016/j.molcata.2012.04.008Babu, R., Roshan, R., Kathalikkattil, A. C., Kim, D. W., & Park, D.-W. (2016). Rapid, Microwave-Assisted Synthesis of Cubic, Three-Dimensional, Highly Porous MOF-205 for Room Temperature CO2 Fixation via Cyclic Carbonate Synthesis. ACS Applied Materials & Interfaces, 8(49), 33723-33731. doi:10.1021/acsami.6b12458Luo, Q., Song, X., Ji, M., Park, S.-E., Hao, C., & Li, Y. (2014). Molecular size- and shape-selective Knoevenagel condensation over microporous Cu3(BTC)2 immobilized amino-functionalized basic ionic liquid catalyst. Applied Catalysis A: General, 478, 81-90. doi:10.1016/j.apcata.2014.03.041Luo, Q., Ji, M., Park, S.-E., Hao, C., & Li, Y. (2016). PdCl2 immobilized on metal–organic framework CuBTC with the aid of ionic liquids: enhanced catalytic performance in selective oxidation of cyclohexene. RSC Advances, 6(39), 33048-33054. doi:10.1039/c6ra02077aWu, J., Gao, Y., Zhang, W., Tan, Y., Tang, A., Men, Y., & Tang, B. (2014). Deep desulfurization by oxidation using an active ionic liquid-supported Zr metal-organic framework as catalyst. Applied Organometallic Chemistry, 29(2), 96-100. doi:10.1002/aoc.3251Abednatanzi, S., Leus, K., Derakhshandeh, P. G., Nahra, F., De Keukeleere, K., Van Hecke, K., … Der Voort, P. V. (2017). POM@IL-MOFs – inclusion of POMs in ionic liquid modified MOFs to produce recyclable oxidation catalysts. Catalysis Science & Technology, 7(7), 1478-1487. doi:10.1039/c6cy02662aAbednatanzi, S., Abbasi, A., & Masteri-Farahani, M. (2017). Immobilization of catalytically active polyoxotungstate into ionic liquid-modified MIL-100(Fe): A recyclable catalyst for selective oxidation of benzyl alcohol. Catalysis Communications, 96, 6-10. doi:10.1016/j.catcom.2017.03.011Wu, Z., Chen, C., Wan, H., Wang, L., Li, Z., Li, B., … Guan, G. (2016). Fabrication of Magnetic NH2-MIL-88B (Fe) Confined Brønsted Ionic Liquid as an Efficient Catalyst in Biodiesel Synthesis. Energy & Fuels, 30(12), 10739-10746. doi:10.1021/acs.energyfuels.6b01212Wan, H., Chen, C., Wu, Z., Que, Y., Feng, Y., Wang, W., … Liu, X. (2014). Encapsulation of Heteropolyanion-Based Ionic Liquid within the Metal-Organic Framework MIL-100(Fe) for Biodiesel Production. ChemCatChem, 7(3), 441-449. doi:10.1002/cctc.201402800Hassan, H. M. A., Betiha, M. A., Mohamed, S. K., El-Sharkawy, E. A., & Ahmed, E. A. (2017). Stable and recyclable MIL-101(Cr)–Ionic liquid based hybrid nanomaterials as heterogeneous catalyst. Journal of Molecular Liquids, 236, 385-394. doi:10.1016/j.molliq.2017.04.034Luo, Q., Ji, M., Lu, M., Hao, C., Qiu, J., & Li, Y. (2013). Organic electron-rich N-heterocyclic compound as a chemical bridge: building a Brönsted acidic ionic liquid confined in MIL-101 nanocages. Journal of Materials Chemistry A, 1(22), 6530. doi:10.1039/c3ta10975ePeng, L., Zhang, J., Yang, S., Han, B., Sang, X., Liu, C., & Yang, G. (2015). The ionic liquid microphase enhances the catalytic activity of Pd nanoparticles supported by a metal–organic framework. Green Chem., 17(8), 4178-4182. doi:10.1039/c5gc01333jPaul, A., Ribeiro, A. P. C., Karmakar, A., Guedes da Silva, M. F. C., & Pombeiro, A. J. L. (2016). A Cu(ii) MOF with a flexible bifunctionalised terpyridine as an efficient catalyst for the single-pot hydrocarboxylation of cyclohexane to carboxylic acid in water/ionic liquid medium. Dalton Transactions, 45(32), 12779-12789. doi:10.1039/c6dt01852aHu, Y.-H., Wang, J.-C., Yang, S., Li, Y.-A., & Dong, Y.-B. (2017). CuI@UiO-67-IM: A MOF-Based Bifunctional Composite Triphase-Transfer Catalyst for Sequential One-Pot Azide–Alkyne Cycloaddition in Water. Inorganic Chemistry, 56(14), 8341-8347. doi:10.1021/acs.inorgchem.7b01025Ma, D., Li, B., Liu, K., Zhang, X., Zou, W., Yang, Y., … Feng, S. (2015). Bifunctional MOF heterogeneous catalysts based on the synergy of dual functional sites for efficient conversion of CO2 under mild and co-catalyst free conditions. Journal of Materials Chemistry A, 3(46), 23136-23142. doi:10.1039/c5ta07026kDing, L.-G., Yao, B.-J., Jiang, W.-L., Li, J.-T., Fu, Q.-J., Li, Y.-A., … Dong, Y.-B. (2017). Bifunctional Imidazolium-Based Ionic Liquid Decorated UiO-67 Type MOF for Selective CO2 Adsorption and Catalytic Property for CO2 Cycloaddition with Epoxides. Inorganic Chemistry, 56(4), 2337-2344. doi:10.1021/acs.inorgchem.6b03169Tharun, J., Bhin, K.-M., Roshan, R., Kim, D. W., Kathalikkattil, A. C., Babu, R., … Park, D.-W. (2016). Ionic liquid tethered post functionalized ZIF-90 framework for the cycloaddition of propylene oxide and CO2. Green Chemistry, 18(8), 2479-2487. doi:10.1039/c5gc02153gPark, B. Y., Ryu, K. Y., Park, J. H., & Lee, S. (2009). A dream combination for catalysis: highly reactive and recyclable scandium(iii) triflate-catalyzed cyanosilylations of carbonyl compounds in an ionic liquid. Green Chemistry, 11(7), 946. doi:10.1039/b900254eOgasawara, Y., Uchida, S., Yamaguchi, K., & Mizuno, N. (2009). A Tin-Tungsten Mixed Oxide as an Efficient Heterogeneous Catalyst for CC Bond-Forming Reactions. Chemistry - A European Journal, 15(17), 4343-4349. doi:10.1002/chem.200802536North, M., Usanov, D. L., & Young, C. (2008). Lewis Acid Catalyzed Asymmetric Cyanohydrin Synthesis. Chemical Reviews, 108(12), 5146-5226. doi:10.1021/cr800255kBrunel, J.-M., & Holmes, I. P. (2004). Chemically Catalyzed Asymmetric Cyanohydrin Syntheses. Angewandte Chemie International Edition, 43(21), 2752-2778. doi:10.1002/anie.200300604Evans, D. A., Truesdale, L. K., & Carroll, G. L. (1973). Cyanosilylation of aldehydes and ketones. A convenient route to cyanohydrin derivatives. Journal of the Chemical Society, Chemical Communications, (2), 55. doi:10.1039/c39730000055Gregory, R. J. H. (1999). Cyanohydrins in Nature and the Laboratory:  Biology, Preparations, and Synthetic Applications. Chemical Reviews, 99(12), 3649-3682. doi:10.1021/cr9902906Chechik, V., Conte, M., Dransfield, T., North, M., & Omedes-Pujol, M. (2010). Cyanogen formation during asymmetric cyanohydrin synthesis. Chemical Communications, 46(19), 3372. doi:10.1039/c001703eBelokon’, Y. N., North, M., & Parsons, T. (2000). Vanadium-Catalyzed Asymmetric Cyanohydrin Synthesis. Organic Letters, 2(11), 1617-1619. doi:10.1021/ol005893eXi, W., Liu, Y., Xia, Q., Li, Z., & Cui, Y. (2015). Direct and Post-Synthesis Incorporation of Chiral Metallosalen Catalysts into Metal-Organic Frameworks for Asymmetric Organic Transformations. Chemistry - A European Journal, 21(36), 12581-12585. doi:10.1002/chem.201501486Dang, D., Wu, P., He, C., Xie, Z., & Duan, C. (2010). Homochiral Metal−Organic Frameworks for Heterogeneous Asymmetric Catalysis. Journal of the American Chemical Society, 132(41), 14321-14323. doi:10.1021/ja101208sHorike, S., Dincǎ, M., Tamaki, K., & Long, J. R. (2008). Size-Selective Lewis Acid Catalysis in a Microporous Metal-Organic Framework with Exposed Mn2+Coordination Sites. Journal of the American Chemical Society, 130(18), 5854-5855. doi:10.1021/ja800669jD’Vries, R. F., de la Peña-O’Shea, V. A., Snejko, N., Iglesias, M., Gutiérrez-Puebla, E., & Monge, M. A. (2013). H3O2 Bridging Ligand in a Metal–Organic Framework. Insight into the Aqua-Hydroxo↔Hydroxyl Equilibrium: A Combined Experimental and Theoretical Study. Journal of the American Chemical Society, 135(15), 5782-5792. doi:10.1021/ja4005046Gustafsson, M., Bartoszewicz, A., Martín-Matute, B., Sun, J., Grins, J., Zhao, T., … Zou, X. (2010). A Family of Highly Stable Lanthanide Metal−Organic Frameworks: Structural Evolution and Catalytic Activity. Chemistry of Materials, 22(11), 3316-3322. doi:10.1021/cm100503qGándara, F., Gómez-Lor, B., Iglesias, M., Snejko, N., Gutiérrez-Puebla, E., & Monge, A. (2009). A new scandium metal organic framework built up from octadecasil zeolitic cages as heterogeneous catalyst. Chemical Communications, (17), 2393. doi:10.1039/b900841aZhu, Y., Wang, Y.-M., Zhao, S.-Y., Liu, P., Wei, C., Wu, Y.-L., … Xie, J.-M. (2014). Three N–H Functionalized Metal–Organic Frameworks with Selective CO2 Uptake, Dye Capture, and Catalysis. Inorganic Chemistry, 53(14), 7692-7699. doi:10.1021/ic5009895Yao, H.-F., Yang, Y., Liu, H., Xi, F.-G., & Gao, E.-Q. (2014). CPO-27-M as heterogeneous catalysts for aldehyde cyanosilylation and styrene oxidation. Journal of Molecular Catalysis A: Chemical, 394, 57-65. doi:10.1016/j.molcata.2014.06.040Rajagopal, G., Selvaraj, S., & Dhahagani, K. (2010). Asymmetric cyanosilylation of ketones catalyzed by recyclable polymer-supported copper(II) salen complexes. Tetrahedron: Asymmetry, 21(18), 2265-2270. doi:10.1016/j.tetasy.2010.07.029Pourmousavi, S. A., & Salahshornia, H. (2011). Efficient, Rapid and Solvent-free Cyanosilylation of Aldehydes and Ketones Catalyzed by SbCl3. Bulletin of the Korean Chemical Society, 32(5), 1575-1578. doi:10.5012/bkcs.2011.32.5.1575El Osta, R., Carlin-Sinclair, A., Guillou, N., Walton, R. I., Vermoortele, F., Maes, M., … Millange, F. (2012). Liquid-Phase Adsorption and Separation of Xylene Isomers by the Flexible Porous Metal–Organic Framework MIL-53(Fe). Chemistry of Materials, 24(14), 2781-2791. doi:10.1021/cm301242dMaes, M., Vermoortele, F., Alaerts, L., Couck, S., Kirschhock, C. E. A., Denayer, J. F. M., & De Vos, D. E. (2010). Separation of Styrene and Ethylbenzene on Metal−Organic Frameworks: Analogous Structures with Different Adsorption Mechanisms. Journal of the American Chemical Society, 132(43), 15277-15285. doi:10.1021/ja106142xAlizadeh, A., & Rostamnia, S. (2010). Adducts of Diketene, Alcohols, and Aldehydes: Useful Building Blocks for 3,4-Dihydropyrimidinones and 1,4-Dihydropyridines. Synthesis, 2010(23), 4057-4060. doi:10.1055/s-0030-1258291Atwal, K. S., Swanson, B. N., Unger, S. E., Floyd, D. M., Moreland, S., Hedberg, A., & O’Reilly, B. C. (1991). Dihydropyrimidine calcium channel blockers. 3. 3-Carbamoyl-4-aryl-1,2,3,4-tetrahydro-6-methyl-5-pyrimidinecarboxylic acid esters as orally effective antihypertensive agents. Journal of Medicinal Chemistry, 34(2), 806-811. doi:10.1021/jm00106a048Kappe, C. O. (2000). Biologically active dihydropyrimidones of the Biginelli-type — a literature survey. European Journal of Medicinal Chemistry, 35(12), 1043-1052. doi:10.1016/s0223-5234(00)01189-2Janis, R. A., & Triggle, D. J. (1983). New developments in calcium ion channel antagonists. Journal of Medicinal Chemistry, 26(6), 775-785. doi:10.1021/jm00360a001Martins, L., Vieira, K. M., Rios, L. M., & Cardoso, D. (2008). Basic catalyzed Knoevenagel condensation by FAU zeolites exchanged with alkylammonium cations. Catalysis Today, 133-135, 706-710. doi:10.1016/j.cattod.2007.12.043McGuirk, C. M., Katz, M. J., Stern, C. L., Sarjeant, A. A., Hupp, J. T., Farha, O. K., & Mirkin, C. A. (2015). Turning On Catalysis: Incorporation of a Hydrogen-Bond-Donating Squaramide Moiety into a Zr Metal–Organic Framework. Journal of the American Chemical Society, 137(2), 919-925. doi:10.1021/ja511403tZhang, X., Zhang, Z., Boissonnault, J., & Cohen, S. M. (2016). Design and synthesis of squaramide-based MOFs as efficient MOF-supported hydrogen-bonding organocatalysts. Che

    Chemical instability of Cu(3)(BTC)(2) by reaction with thiols

    Full text link
    In contrast to Fe(BTC) (BTC: 1,3,5-benzenetricarboxylate), the crystal structure of Cu3(BTC)2, a commercial metal organic framework widely used as solid catalyst, collapses when contacted with thiols under mild reaction conditions forming copper nanoparticles.Financial support by the Spanish DGI (CTQ2009-11587 and CTQ2010-18671) is gratefully acknowledged. Maykel de Miguel is thanked for helping to record TEM images.Dhakshinamoorthy, A.; Alvaro Rodríguez, MM.; Concepción Heydorn, P.; García Gómez, H. (2011). Chemical instability of Cu(3)(BTC)(2) by reaction with thiols. Catalysis Communications. 12(11):1018-1021. https://doi.org/10.1016/j.catcom.2011.03.018S10181021121

    Cobalt-Based Metal Organic Frameworks as Solids Catalysts for Oxidation Reactions

    Full text link
    [EN] Metal organic frameworks (MOFs) are porous crystalline solids whose frameworks are constituted by metal ions/nodes with rigid organic linkers leading to the formation of materials having high surface area and pore volume. One of the unique features of MOFs is the presence of coordinatively unsaturated metal sites in their crystalline lattice that can act as Lewis acid sites promoting organic transformations, including aerobic oxidation reactions of various substrates such as hydrocarbons, alcohols, and sulfides. This review article summarizes the existing Co-based MOFs for oxidation reactions organized according to the nature of substrates like hydrocarbon, alcohol, olefin, and water. Both aerobic conditions and peroxide oxidants are discussed. Emphasis is placed on comparing the advantages of using MOFs as solid catalysts with respect to homogeneous salts in terms of product selectivity and long-term stability. The final section provides our view on future developments in this field.H.G. is thankful for financial assistance from the Spanish Ministry of Science and Innovation (Severo Ochoa and CTQ2018-980237-CO2-1) and Generalitat Valenciana (Prometeo 2017-083). A.D. is thankful for the University Grants Commission, New Delhi, for awarding an Assistant Professorship through the Faculty Recharge Programme. A.D. acknowledges financial assistance from the Science Engineering Research Board, India, through its Extra Mural Research project (EMR/2016/006500). S.N. is thankful for financial support by the Ministerio de Ciencia, Innovacion y Universidades (RTI 2018-099482-A-I00 project), Fundacion Ramon Areces (XVIII Concurso Nacional para la Adjudicacion de Ayudas a la Investigacion en Ciencias de la Vida y de la Materia, 2016) and Agencia Valenciana de la Innovacion (AVI-GVA, Carboagua project, INNEST/2020/111).Dhakshinamoorthy, A.; Montero-Lanzuela, E.; Navalón Oltra, S.; García Gómez, H. (2021). Cobalt-Based Metal Organic Frameworks as Solids Catalysts for Oxidation Reactions. Catalysts. 11(1):1-25. https://doi.org/10.3390/catal1101009512511

    Synthesis of borasiloxanes by oxidative hydrolysis of silanes and pinacolborane using Cu3(BTC)2 as a solid catalyst

    Full text link
    [EN] A convenient method for the synthesis of borasiloxanes from silanes and pinacolboranes using Cu-3(BTC)(2) as a heterogeneous catalyst in acetonitrile at 70 degrees C is reported. This procedure is more convenient than Ru and Pd based homogeneous catalysts because it avoids the use of noble metals, easy handling of starting materials and the catalyst can be reused.AD thanks the University Grants Commission (UGC), New Delhi, for the award of an Assistant Professorship under its Faculty Recharge Programme. AD also thanks the Department of Science and Technology, India, for the financial support through Extra Mural Research Funding (EMR/2016/006500). Financial support by the Spanish Ministry of Economy and Competitiveness (Severo Ochoa and CTQ2015-69153-CO2-1) is gratefully acknowledged.Dhakshinamoorthy, A.; Asiri, AM.; Concepción Heydorn, P.; García Gómez, H. (2017). Synthesis of borasiloxanes by oxidative hydrolysis of silanes and pinacolborane using Cu3(BTC)2 as a solid catalyst. Chemical Communications. 53(72):9998-10001. https://doi.org/10.1039/c7cc05221aS9998100015372Liu, W., Pink, M., & Lee, D. (2009). Conjugated Polymer Sensors Built on π-Extended Borasiloxane Cages. Journal of the American Chemical Society, 131(24), 8703-8707. doi:10.1021/ja902333pKhelevina, O. G., & Malyasova, A. S. (2014). Cross-linking of borosiloxane oligomers and properties of materials with vulcanized borosiloxane coating. Russian Journal of Applied Chemistry, 87(4), 480-484. doi:10.1134/s10704272140400144Puneet, P., Vedarajan, R., & Matsumi, N. (2016). Alternating Poly(borosiloxane) for Solid State Ultrasensitivity Toward Fluoride Ions in Aqueous Media. ACS Sensors, 1(10), 1198-1202. doi:10.1021/acssensors.6b00346Han, Y.-K., Yoo, J., & Yim, T. (2016). Distinct Reaction Characteristics of Electrolyte Additives for High-Voltage Lithium-Ion Batteries: Tris(trimethylsilyl) Phosphite, Borate, and Phosphate. Electrochimica Acta, 215, 455-465. doi:10.1016/j.electacta.2016.08.131Makarova, E. A., Shimizu, S., Matsuda, A., Luk’yanets, E. A., & Kobayashi, N. (2008). meso-Aryl tribenzosubporphyrin—a totally substituted subporphyrin species. Chemical Communications, (18), 2109. doi:10.1039/b801712cNeville, L. A., Spalding, T. R., & Ferguson, G. (2000). A Novel Borosilicate Cage Compound with an Incomplete B4Si4 Cube Structure: [(tBuSi)4(CH2=CHC6H4B)4O10]. Angewandte Chemie, 39(20), 3598-3601. doi:10.1002/1521-3773(20001016)39:203.0.co;2-aMingotaud, A.-F., Héroguez, V., & Soum, A. (1998). Synthesis of difunctional borasiloxanes and their behavior in metathesis reactions. Journal of Organometallic Chemistry, 560(1-2), 109-115. doi:10.1016/s0022-328x(98)00498-7Beckett, M. A., Rugen-Hankey, M. P., & Sukumar Varma, K. (2003). Synthesis and characterisation of cyclo-boratetrasiloxane, (RBO)(Me2SiO)3 (R=nBu, Ar), derivatives. Polyhedron, 22(25-26), 3333-3337. doi:10.1016/s0277-5387(03)00478-9Schiavon, M. A., Armelin, N. A., & Yoshida, I. V. P. (2008). Novel poly(borosiloxane) precursors to amorphous SiBCO ceramics. Materials Chemistry and Physics, 112(3), 1047-1054. doi:10.1016/j.matchemphys.2008.07.041Brisdon, B. J., Mahon, M. F., Molloy, K. C., & Schofield, P. J. (1992). Synthesis and structural characterization of cycloborasiloxanes: The X-ray crystal structures of cyclo-1,3,3,5,5-pentaphenyl-1-bora-3,5-disiloxane and cyclo-1,3,3,5,7,7-hexaphenyl-1,5-dibora-3,7-disiloxane. Journal of Organometallic Chemistry, 436(1), 11-22. doi:10.1016/0022-328x(92)85022-oMurphy, D., Sheehan, J. P., Spalding, T. R., Ferguson, G., Lough, A. J., & Gallagher, J. F. (1993). Compounds containing B–O–X bonds (X = Si, Ge, Sn, Pb). Part 4.—Crystal structures of B(OSiPh3)3, PhB(OSiPh3)2and PhB(OGePh3)2. J. Mater. Chem., 3(12), 1275-1283. doi:10.1039/jm9930301275Zhao, Z., Cammidge, A. N., & Cook, M. J. (2009). Towards black chromophores: μ-oxo linked phthalocyanine–porphyrin dyads and phthalocyanine–subphthalocyanine dyad and triad arrays. Chemical Communications, (48), 7530. doi:10.1039/b916649aFujdala, K. L., Oliver, A. G., Hollander, F. J., & Tilley, T. D. (2003). Tris(tert-butoxy)siloxy Derivatives of Boron, Including the Boronous Acid HOB[OSi(OtBu)3]2and the Metal (Siloxy)boryloxide Complex Cp2Zr(Me)OB[OSi(OtBu)3]2:  A Remarkable Crystal Structure with 18 Independent Molecules in Its Asymmetric Unit. Inorganic Chemistry, 42(4), 1140-1150. doi:10.1021/ic0205482Kleeberg, C., Cheung, M. S., Lin, Z., & Marder, T. B. (2011). Copper-Mediated Reduction of CO2with pinB-SiMe2Ph via CO2Insertion into a Copper–Silicon Bond. Journal of the American Chemical Society, 133(47), 19060-19063. doi:10.1021/ja208969dMetcalfe, R. A., Kreller, D. I., Tian, J., Kim, H., Taylor, N. J., Corrigan, J. F., & Collins, S. (2002). Organoborane-Modified Silica Supports for Olefin Polymerization:  Soluble Models for Metallocene Catalyst Deactivation. Organometallics, 21(8), 1719-1726. doi:10.1021/om010284bKijima, I., Yamamoto, T., & Abe, Y. (1971). Alkoxysilanes. VIII. The Preparation of Alkoxysiloxy Derivatives of Aluminum and Boron. Bulletin of the Chemical Society of Japan, 44(11), 3193-3194. doi:10.1246/bcsj.44.3193Marciniec, B., & Walkowiak, J. (2008). New catalytic route to borasiloxanes. Chemical Communications, (23), 2695. doi:10.1039/b801013gOhmura, T., Torigoe, T., & Suginome, M. (2012). Catalytic Functionalization of Methyl Group on Silicon: Iridium-Catalyzed C(sp3)–H Borylation of Methylchlorosilanes. Journal of the American Chemical Society, 134(42), 17416-17419. doi:10.1021/ja307956wYoshimura, A., Yoshinaga, M., Yamashita, H., Igarashi, M., Shimada, S., & Sato, K. (2017). A convenient and clean synthetic method for borasiloxanes by Pd-catalysed reaction of silanols with diborons. Chemical Communications, 53(43), 5822-5825. doi:10.1039/c7cc02420gIto, M., Itazaki, M., & Nakazawa, H. (2014). Selective Boryl Silyl Ether Formation in the Photoreaction of Bisboryloxide/Boroxine with Hydrosilane Catalyzed by a Transition-Metal Carbonyl Complex. Journal of the American Chemical Society, 136(17), 6183-6186. doi:10.1021/ja500465xChatterjee, B., & Gunanathan, C. (2017). Ruthenium-catalysed multicomponent synthesis of borasiloxanes. Chemical Communications, 53(16), 2515-2518. doi:10.1039/c7cc00787fHuang, Y.-B., Liang, J., Wang, X.-S., & Cao, R. (2017). Multifunctional metal–organic framework catalysts: synergistic catalysis and tandem reactions. Chemical Society Reviews, 46(1), 126-157. doi:10.1039/c6cs00250aDhakshinamoorthy, A., Asiri, A. M., & Garcia, H. (2016). Mixed-metal or mixed-linker metal organic frameworks as heterogeneous catalysts. Catalysis Science & Technology, 6(14), 5238-5261. doi:10.1039/c6cy00695gDhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2010). Aerobic Oxidation of Benzylic Alcohols Catalyzed by Metal−Organic Frameworks Assisted by TEMPO. ACS Catalysis, 1(1), 48-53. doi:10.1021/cs1000703Schlichte, K., Kratzke, T., & Kaskel, S. (2004). Improved synthesis, thermal stability and catalytic properties of the metal-organic framework compound Cu3(BTC)2. Microporous and Mesoporous Materials, 73(1-2), 81-88. doi:10.1016/j.micromeso.2003.12.027Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2010). Metal-Organic Frameworks as Efficient Heterogeneous Catalysts for the Regioselective Ring Opening of Epoxides. Chemistry - A European Journal, 16(28), 8530-8536. doi:10.1002/chem.201000588Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2009). Metal organic frameworks as efficient heterogeneous catalysts for the oxidation of benzylic compounds with t-butylhydroperoxide. Journal of Catalysis, 267(1), 1-4. doi:10.1016/j.jcat.2009.08.001Opanasenko, M., Dhakshinamoorthy, A., Shamzhy, M., Nachtigall, P., Horáček, M., Garcia, H., & Čejka, J. (2013). Comparison of the catalytic activity of MOFs and zeolites in Knoevenagel condensation. Catal. Sci. Technol., 3(2), 500-507. doi:10.1039/c2cy20586fChui, S. S. (1999). A Chemically Functionalizable Nanoporous Material [Cu3(TMA)2(H2O)3]n. Science, 283(5405), 1148-1150. doi:10.1126/science.283.5405.1148Dhakshinamoorthy, A., Concepcion, P., & Garcia, H. (2016). Dehydrogenative coupling of silanes with alcohols catalyzed by Cu3(BTC)2. Chemical Communications, 52(13), 2725-2728. doi:10.1039/c5cc10216bDhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2017). HKUST-1 catalyzed room temperature hydrogenation of acetophenone by silanes. Catalysis Communications, 97, 74-78. doi:10.1016/j.catcom.2017.03.023Bennett, E., Wilson, T., Murphy, P. J., Refson, K., Hannon, A. C., Imberti, S., … Parker, S. F. (2015). How the Surface Structure Determines the Properties of CuH. Inorganic Chemistry, 54(5), 2213-2220. doi:10.1021/ic502700

    Iron Nanoparticles Embedded in Graphitic Carbon Matrix as Heterogeneous Catalysts for the Oxidative C-N Coupling of Aromatic N-H Compounds and Amides

    Full text link
    [EN] Fe or Co nanoparticles (NPs) and two nanoparticulate Fe-Co alloys having different Fe/Co atomic ratio with average particle size ranging from 10.9 to 26.5 nm embedded in turbostratic graphitic carbon matrix have been prepared by pyrolysis at 900 degrees C under inert atmosphere of chitosan powders containing Fe2+ and Co2+ ions in various proportions. The resulting Fe/CoNP@C samples have been evaluated as heterogeneous catalysts for the oxidative C-N coupling of amides and aromatic N-H compounds. It was observed that sequential addition of two aliquots of tert-butyl hydroperoxide (TBHP) in an excess of N, N-dimethylacetamide (DMA) as solvent affords the corresponding coupling product in high yields, and the most efficient catalyst was FeNP@C. FeNP@C is reusable and exhibits a wide scope. The catalytic activity of Fe is supported by using highly pure Fe salt and by the observation that purposely addition of Cu2+ impurities even plays a detrimental effect on the catalytic activity. Mechanistic studies by quenching with 2,2,6,6-tetramethylpiperidyl-1-oxyl (TEMPO) have shown that the amide radical is the key reaction intermediate, and the role of FeNP@C is to generate the first radicals by TBHP decomposition.Financial support by the Spanish Ministry of Economy and Competitiveness (Severo Ochoa and CTQ2015-69153-CO2-1) and Generalitat Valenciana (Prometeo 2013-014) is gratefully acknowledged. J.H. thanks the Chinese Scholarship Council for a doctoral fellowship at Valencia. A.D.M. thanks University Grants Commission, New Delhi, for the award of Assistant Professorship under its Faculty Recharge Program. A.D.M. also thanks the Department of Science and Technology, India, for the financial support through the Extra Mural Research funding (EMR/2016/006500).He, J.; Dhakshinamoorthy, A.; Primo Arnau, AM.; García Gómez, H. (2017). Iron Nanoparticles Embedded in Graphitic Carbon Matrix as Heterogeneous Catalysts for the Oxidative C-N Coupling of Aromatic N-H Compounds and Amides. ChemCatChem. 9(15):3003-3012. https://doi.org/10.1002/cctc.201700429S30033012915Astruc, D., Lu, F., & Aranzaes, J. R. (2005). Nanoparticles as Recyclable Catalysts: The Frontier between Homogeneous and Heterogeneous Catalysis. Angewandte Chemie International Edition, 44(48), 7852-7872. doi:10.1002/anie.200500766Astruc, D., Lu, F., & Aranzaes, J. R. (2005). Nanopartikel als regenerierbare Katalysatoren: an der Nahtstelle zwischen homogener und heterogener Katalyse. Angewandte Chemie, 117(48), 8062-8083. doi:10.1002/ange.200500766Haruta, M. (2002). CATTECH, 6(3), 102-115. doi:10.1023/a:1020181423055Narayanan, R., & El-Sayed, M. A. (2005). Catalysis with Transition Metal Nanoparticles in Colloidal Solution:  Nanoparticle Shape Dependence and Stability. The Journal of Physical Chemistry B, 109(26), 12663-12676. doi:10.1021/jp051066pMikami, Y., Dhakshinamoorthy, A., Alvaro, M., & García, H. (2013). Catalytic activity of unsupported gold nanoparticles. Catal. Sci. Technol., 3(1), 58-69. doi:10.1039/c2cy20068fHaruta, M. (1997). Size- and support-dependency in the catalysis of gold. Catalysis Today, 36(1), 153-166. doi:10.1016/s0920-5861(96)00208-8Haruta, M. (2004). Gold as a novel catalyst in the 21st century: Preparation, working mechanism and applications. Gold Bulletin, 37(1-2), 27-36. doi:10.1007/bf03215514Chinchilla, R., & Nájera, C. (2011). Recent advances in Sonogashira reactions. Chemical Society Reviews, 40(10), 5084. doi:10.1039/c1cs15071eDhakshinamoorthy, A., Navalon, S., Alvaro, M., & Garcia, H. (2012). Metal Nanoparticles as Heterogeneous Fenton Catalysts. ChemSusChem, 5(1), 46-64. doi:10.1002/cssc.201100517Farina, V. (2004). High-Turnover Palladium Catalysts in Cross-Coupling and Heck Chemistry: A Critical Overview. Advanced Synthesis & Catalysis, 346(13-15), 1553-1582. doi:10.1002/adsc.200404178White, R. J., Luque, R., Budarin, V. L., Clark, J. H., & Macquarrie, D. J. (2009). Supported metal nanoparticles on porous materials. Methods and applications. Chem. Soc. Rev., 38(2), 481-494. doi:10.1039/b802654hComotti, M., Li, W.-C., Spliethoff, B., & Schüth, F. (2006). Support Effect in High Activity Gold Catalysts for CO Oxidation. Journal of the American Chemical Society, 128(3), 917-924. doi:10.1021/ja0561441Lopez, N. (2004). On the origin of the catalytic activity of gold nanoparticles for low-temperature CO oxidation. Journal of Catalysis, 223(1), 232-235. doi:10.1016/j.jcat.2004.01.001Okumura, M., Nakamura, S., Tsubota, S., Nakamura, T., Azuma, M., & Haruta, M. (1998). Catalysis Letters, 51(1/2), 53-58. doi:10.1023/a:1019020614336Pisiewicz, S., Formenti, D., Surkus, A.-E., Pohl, M.-M., Radnik, J., Junge, K., … Beller, M. (2015). Synthesis of Nickel Nanoparticles with N-Doped Graphene Shells for Catalytic Reduction Reactions. ChemCatChem, 8(1), 129-134. doi:10.1002/cctc.201500848Westerhaus, F. A., Jagadeesh, R. V., Wienhöfer, G., Pohl, M.-M., Radnik, J., Surkus, A.-E., … Beller, M. (2013). Heterogenized cobalt oxide catalysts for nitroarene reduction by pyrolysis of molecularly defined complexes. Nature Chemistry, 5(6), 537-543. doi:10.1038/nchem.1645Banerjee, A., Gokhale, R., Bhatnagar, S., Jog, J., Bhardwaj, M., Lefez, B., … Ogale, S. (2012). MOF derived porous carbon–Fe3O4 nanocomposite as a high performance, recyclable environmental superadsorbent. Journal of Materials Chemistry, 22(37), 19694. doi:10.1039/c2jm33798cHu, J., Wang, H., Gao, Q., & Guo, H. (2010). Porous carbons prepared by using metal–organic framework as the precursor for supercapacitors. Carbon, 48(12), 3599-3606. doi:10.1016/j.carbon.2010.06.008Farad. Discuss 2016 https://doi.org/10.1039/C6FD00198JWezendonk, T. A., Santos, V. P., Nasalevich, M. A., Warringa, Q. S. E., Dugulan, A. I., Chojecki, A., … Gascon, J. (2016). Elucidating the Nature of Fe Species during Pyrolysis of the Fe-BTC MOF into Highly Active and Stable Fischer–Tropsch Catalysts. ACS Catalysis, 6(5), 3236-3247. doi:10.1021/acscatal.6b00426An, B., Cheng, K., Wang, C., Wang, Y., & Lin, W. (2016). Pyrolysis of Metal–Organic Frameworks to Fe3O4@Fe5C2 Core–Shell Nanoparticles for Fischer–Tropsch Synthesis. ACS Catalysis, 6(6), 3610-3618. doi:10.1021/acscatal.6b00464Santos, V. P., Wezendonk, T. A., Jaén, J. J. D., Dugulan, A. I., Nasalevich, M. A., Islam, H.-U., … Gascon, J. (2015). Metal organic framework-mediated synthesis of highly active and stable Fischer-Tropsch catalysts. Nature Communications, 6(1). doi:10.1038/ncomms7451DE JONG, K. P., & GEUS, J. W. (2000). Carbon Nanofibers: Catalytic Synthesis and Applications. Catalysis Reviews, 42(4), 481-510. doi:10.1081/cr-100101954Joo, S. H., Choi, S. J., Oh, I., Kwak, J., Liu, Z., Terasaki, O., & Ryoo, R. (2001). Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles. Nature, 412(6843), 169-172. doi:10.1038/35084046Serp, P. (2003). Carbon nanotubes and nanofibers in catalysis. Applied Catalysis A: General, 253(2), 337-358. doi:10.1016/s0926-860x(03)00549-0Chen, Z., Higgins, D., Yu, A., Zhang, L., & Zhang, J. (2011). A review on non-precious metal electrocatalysts for PEM fuel cells. Energy & Environmental Science, 4(9), 3167. doi:10.1039/c0ee00558dSherry, B. D., & Fürstner, A. (2008). The Promise and Challenge of Iron-Catalyzed Cross Coupling. Accounts of Chemical Research, 41(11), 1500-1511. doi:10.1021/ar800039xThomé, I., Nijs, A., & Bolm, C. (2012). Trace metal impurities in catalysis. Chemical Society Reviews, 41(3), 979. doi:10.1039/c2cs15249eSaidulu, G., Kumar, R. A., & Reddy, K. R. (2015). Iron-catalyzed C–N bond formation via oxidative Csp3–H bond functionalization adjacent to nitrogen in amides and anilines: Synthesis of N-alkyl and N-benzyl azoles. Tetrahedron Letters, 56(28), 4200-4203. doi:10.1016/j.tetlet.2015.05.048Xia, Q., & Chen, W. (2012). Iron-Catalyzed N-Alkylation of Azoles via Cleavage of an sp3 C–H Bond Adjacent to a Nitrogen Atom. The Journal of Organic Chemistry, 77(20), 9366-9373. doi:10.1021/jo301568eTruong, T., Nguyen, K. D., Doan, S. H., & Phan, N. T. S. (2016). Efficient and recyclable Cu2(BPDC)2(DABCO)-catalyzed direct amination of activated sp3 C H bonds by N–H heterocycles. Applied Catalysis A: General, 510, 27-33. doi:10.1016/j.apcata.2015.10.042Chen, F., Topf, C., Radnik, J., Kreyenschulte, C., Lund, H., Schneider, M., … Beller, M. (2016). Stable and Inert Cobalt Catalysts for Highly Selective and Practical Hydrogenation of C≡N and C═O Bonds. Journal of the American Chemical Society, 138(28), 8781-8788. doi:10.1021/jacs.6b03439Cui, X., Li, Y., Bachmann, S., Scalone, M., Surkus, A.-E., Junge, K., … Beller, M. (2015). Correction to «Synthesis and Characterization of Iron–Nitrogen-Doped Graphene/Core–Shell Catalysts: Efficient Oxidative Dehydrogenation of N-Heterocycles». Journal of the American Chemical Society, 138(1), 457-457. doi:10.1021/jacs.5b10746He, L., Weniger, F., Neumann, H., & Beller, M. (2016). Synthesis, Characterization, and Application of Metal Nanoparticles Supported on Nitrogen-Doped Carbon: Catalysis beyond Electrochemistry. Angewandte Chemie International Edition, 55(41), 12582-12594. doi:10.1002/anie.201603198He, L., Weniger, F., Neumann, H., & Beller, M. (2016). Synthese, Charakterisierung und Anwendungen von Metall-Nanopartikeln nach Fixierung auf N-dotiertem Kohlenstoff: Katalyse jenseits der Elektrochemie. Angewandte Chemie, 128(41), 12770-12783. doi:10.1002/ange.201603198Ziccarelli, I., Neumann, H., Kreyenschulte, C., Gabriele, B., & Beller, M. (2016). Pd-Supported on N-doped carbon: improved heterogeneous catalyst for base-free alkoxycarbonylation of aryl iodides. Chemical Communications, 52(86), 12729-12732. doi:10.1039/c6cc07269kPrimo, A., Atienzar, P., Sanchez, E., Delgado, J. M., & García, H. (2012). From biomass wastes to large-area, high-quality, N-doped graphene: catalyst-free carbonization of chitosan coatings on arbitrary substrates. Chemical Communications, 48(74), 9254. doi:10.1039/c2cc34978gPrimo, A., Sánchez, E., Delgado, J. M., & García, H. (2014). High-yield production of N-doped graphitic platelets by aqueous exfoliation of pyrolyzed chitosan. Carbon, 68, 777-783. doi:10.1016/j.carbon.2013.11.068Abellán, G., Latorre-Sánchez, M., Fornés, V., Ribera, A., & García, H. (2012). Graphene as a carbon source effects the nanometallurgy of nickel in Ni,Mn layered double hydroxide–graphene oxide composites. Chemical Communications, 48(93), 11416. doi:10.1039/c2cc35750jLatorre-Sanchez, M., Atienzar, P., Abellán, G., Puche, M., Fornés, V., Ribera, A., & García, H. (2012). The synthesis of a hybrid graphene–nickel/manganese mixed oxide and its performance in lithium-ion batteries. Carbon, 50(2), 518-525. doi:10.1016/j.carbon.2011.09.007Park, E., Ostrovski, O., Zhang, J., Thomson, S., & Howe, R. (2001). Characterization of phases formed in the iron carbide process by X-ray diffraction, mossbauer, X-ray photoelectron spectroscopy, and raman spectroscopy analyses. Metallurgical and Materials Transactions B, 32(5), 839-845. doi:10.1007/s11663-001-0071-1Peng, S., Wang, C., Xie, J., & Sun, S. (2006). Synthesis and Stabilization of Monodisperse Fe Nanoparticles. Journal of the American Chemical Society, 128(33), 10676-10677. doi:10.1021/ja063969hPrimo, A., Esteve-Adell, I., Blandez, J. F., Dhakshinamoorthy, A., Álvaro, M., Candu, N., … García, H. (2015). High catalytic activity of oriented 2.0.0 copper(I) oxide grown on graphene film. Nature Communications, 6(1). doi:10.1038/ncomms9561Primo, A., Esteve-Adell, I., Coman, S. N., Candu, N., Parvulescu, V. I., & Garcia, H. (2015). One-Step Pyrolysis Preparation of 1.1.1 Oriented Gold Nanoplatelets Supported on Graphene and Six Orders of Magnitude Enhancement of the Resulting Catalytic Activity. Angewandte Chemie International Edition, 55(2), 607-612. doi:10.1002/anie.201508908Primo, A., Esteve-Adell, I., Coman, S. N., Candu, N., Parvulescu, V. I., & Garcia, H. (2015). One-Step Pyrolysis Preparation of 1.1.1 Oriented Gold Nanoplatelets Supported on Graphene and Six Orders of Magnitude Enhancement of the Resulting Catalytic Activity. Angewandte Chemie, 128(2), 617-622. doi:10.1002/ange.201508908Mateo, D., Esteve-Adell, I., Albero, J., Royo, J. F. S., Primo, A., & Garcia, H. (2016). 111 oriented gold nanoplatelets on multilayer graphene as visible light photocatalyst for overall water splitting. Nature Communications, 7(1). doi:10.1038/ncomms11819Buaki-Sogo, M., Serra, M., Primo, A., Alvaro, M., & Garcia, H. (2012). Alginate as Template in the Preparation of Active Titania Photocatalysts. ChemCatChem, 5(2), 513-518. doi:10.1002/cctc.201200386Lavorato, C., Primo, A., Molinari, R., & García, H. (2014). Natural Alginate as a Graphene Precursor and Template in the Synthesis of Nanoparticulate Ceria/Graphene Water Oxidation Photocatalysts. ACS Catalysis, 4(2), 497-504. doi:10.1021/cs401068mBuchwald, S. L., & Bolm, C. (2009). On the Role of Metal Contaminants in Catalyses with FeCl3. Angewandte Chemie International Edition, 48(31), 5586-5587. doi:10.1002/anie.200902237Buchwald, S. L., & Bolm, C. (2009). On the Role of Metal Contaminants in Catalyses with FeCl3. Angewandte Chemie, 121(31), 5694-5695. doi:10.1002/ange.20090223

    Tridimensional N, P-Codoped Carbon Sponges as Highly Selective Catalysts for Aerobic Oxidative Coupling of Benzylamine

    Full text link
    [EN] Two tridimensional N-doped porous carbon sponges (3DC-X) have been prepared by using cetyltrimethylammonium chloride ( CTAC) and cetyltrimethylammonium bromide (CTAB) as soft templates and alginate to replicate the liquid crystals formed by CTA+ in water. Alginate is a filmogenic polysaccharide of natural origin having the ability to form nanometric defectless films around objects. Subsequent pyrolysis at 900 degrees C under an Ar flow of the resulting CTA(+)-polysaccharide assemblies result in 3DC-1 and 3DC-2, with the N percentages of 0.48 and 0.36 wt % for the materials resulting from CTAC and CTAB, respectively. Another four 3DC materials were obtained via pyrolysis of the adduct of phytic acid and chitosan, rendering an amorphous, N and P-codoped carbon sample (3DC-3 to 3DC-6). The six 3DC samples exhibit a large area (>650 m(2) x g(-1)) and porosity, as determined by Ar adsorption. The catalytic activity of these materials in promoting the aerobic oxidation of benzylamine increases with the specific surface area and doping, being the largest for 3DC-4, which is able to achieve 73% benzylamine conversion to N-benzylidene benzylamine in solventless conditions at 70 degrees C in 5 h. Quenching studies and hot filtration tests indicate that 3DC-4 acts as a heterogeneous catalyst rather than an initiator, triggering the formation of hydroperoxyl and hydroxyl radicals as the main reactive oxygen species involved in the aerobic oxidation.Financial support by the Spanish Ministry of Science and Innovation (Severo Ochoa 2016 and RTI2018-890237-CO2-R1) and Generalitat Valenciana is gratefully acknowledged. A.P. thanks the Spanish Ministry for a Ramon y Cajal Research associate contract. A.D. is thankful to the University Grants Commission, New Dekhi, for awarding Assistant Professorship through the Faculty Recharge Programme.Peng, L.; Garcia-Baldovi, H.; Dhakshinamoorthy, A.; Primo Arnau, AM.; García Gómez, H. (2022). Tridimensional N, P-Codoped Carbon Sponges as Highly Selective Catalysts for Aerobic Oxidative Coupling of Benzylamine. ACS Omega. 7(13):11092-11100. https://doi.org/10.1021/acsomega.1c07179110921110071

    Recent Advances in the Use of Covalent Organic Frameworks as Heterogenous Photocatalysts in Organic Synthesis

    Full text link
    Organic photochemistry is intensely developed in the 1980s, in which the nature of excited electronic states and the energy and electron transfer processes are thoroughly studied and finally well-understood. This knowledge from molecular organic photochemistry can be transferred to the design of covalent organic frameworks (COFs) as active visible-light photocatalysts. COFs constitute a new class of crystalline porous materials with substantial application potentials. Featured with outstanding structural tunability, large porosity, high surface area, excellent stability, and unique photoelectronic properties, COFs are studied as potential candidates in various research areas (e.g., photocatalysis). This review aims to provide the state-of-the-art insights into the design of COF photocatalysts (pristine, functionalized, and hybrid COFs) for organic transformations. The catalytic reaction mechanism of COF-based photocatalysts and the influence of dimensionality and crystallinity on heterogenous photocatalysis performance are also discussed, followed by perspectives and prospects on the main challenges and opportunities in future research of COFs and COF-based photocatalyst
    corecore