40 research outputs found

    Trigger for group A streptococcal M1T1 invasive disease

    Full text link
    The globally disseminated Streptococcus pyogenes M1T1 clone causes a number of highly invasive human diseases. The transition from local to systemic infection occurs by an unknown mechanism; however invasive M1T1 clinical isolates are known to express significantly less cysteine protease SpeB than M1T1 isolates from local infections. Here, we show that in comparison to the M1T1 strain 5448, the isogenic mutant ΔspeB accumulated 75‐fold more human plasmin activity on the bacterial surface following incubation in human plasma. Human plasminogen was an absolute requirement for M1T1 strain 5448 virulence following subcutaneous (s.c.) infection of humanized plasminogen transgenic mice. S. pyogenes M1T1 isolates from the blood of infected humanized plasminogen transgenic mice expressed reduced levels of SpeB in comparison with the parental 5448 used as inoculum. We propose that the human plasminogen system plays a critical role in group A streptococcal M1T1 systemic disease initiation. SpeB is required for S. pyogenes M1T1 survival at the site of local infection, however, SpeB also disrupts the interaction of S. pyogenes M1T1 with the human plasminogen activation system. Loss of SpeB activity in a subpopulation of S. pyogenes M1T1 at the site of infection results in accumulation of surface plasmin activity thus triggering systemic spread.—Cole, J. N., McArthur, J. D., McKay, F. C., Sanderson‐Smith, M. L., Cork, A. J., Ranson, M., Rohde, M., Itzek, A., Sun, H., Ginsburg, D., Kotb, M., Nizet, V., Chhatwal, G. S., Walker, M. J. Trigger for group A streptococcal M1T1 invasive disease. FASEB J. 20, E1139–E1145 (2006)Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154248/1/fsb2fj065804fje.pd

    ガーネット、サマータウン、グローバル・イシューズ案内 : 英語教材のフィクション対ノンフィクション

    Get PDF
    For the sake of the Japanese learners of English who love reading, this paper introduces three different series of readers: Garnet Oracle Readers, Summertown Readers, and National Geographic's Global Issues. Garnet Oracle and Summertown are both so-called graded readers. The former are for highschool and university students who study English as a foreign or second language while the latter are written for business people who have to learn English as a lingua franca. Both are,however, original fictional stories, some of which are quite enjoyable and really worth reading. Peter Viney, Garnet's main author, can write a variety of genres: for example, Space Romance is a romantic sci-fi story in an impressive setting; A Tidy Ghost is a witty ghost story whose terror dramatically changes into sheer humor at the ending; but,above all,his Underground is highly recommended because of the unforgettable character Tommy, a mute elderly man who lives in the London underground, saving the protagonist in big trouble. Summertown's counterpart must be James Schofield. Although his amateurish suspense stories tend to be rather boring, his humorous stories such as Room Service and Double Trouble are readable with a lot of laughter. National Geographic's Global Issues may seem to be no comparison with these interesting stories since they are serious nonfiction pamphlets edited for American high school students. Despite the foreign language, Japanese students can also appreciate the discussed, grave environmental problems of our planet Earth where the population explosion has been causing disastrous situations. In a sense, fact is truly stranger than fiction. So, which is more interesting, fiction or nonfiction? I hope you read the three series and decide for yourself

    Detection of Epidemic Scarlet Fever Group A Streptococcus in Australia.

    Get PDF
    Sentinel hospital surveillance was instituted in Australia to detect the presence of pandemic group A Streptococcus strains causing scarlet fever. Genomic and phylogenetic analyses indicated the presence of an Australian GAS emm12 scarlet fever isolate related to United Kingdom outbreak strains. National surveillance to monitor this pandemic is recommended

    Chemical Synergy between Ionophore PBT2 and Zinc Reverses Antibiotic Resistance.

    Get PDF
    The World Health Organization reports that antibiotic-resistant pathogens represent an imminent global health disaster for the 21st century. Gram-positive superbugs threaten to breach last-line antibiotic treatment, and the pharmaceutical industry antibiotic development pipeline is waning. Here we report the synergy between ionophore-induced physiological stress in Gram-positive bacteria and antibiotic treatment. PBT2 is a safe-for-human-use zinc ionophore that has progressed to phase 2 clinical trials for Alzheimer's and Huntington's disease treatment. In combination with zinc, PBT2 exhibits antibacterial activity and disrupts cellular homeostasis in erythromycin-resistant group A Streptococcus (GAS), methicillin-resistant Staphylococcus aureus (MRSA), and vancomycin-resistant Enterococcus (VRE). We were unable to select for mutants resistant to PBT2-zinc treatment. While ineffective alone against resistant bacteria, several clinically relevant antibiotics act synergistically with PBT2-zinc to enhance killing of these Gram-positive pathogens. These data represent a new paradigm whereby disruption of bacterial metal homeostasis reverses antibiotic-resistant phenotypes in a number of priority human bacterial pathogens.IMPORTANCE The rise of bacterial antibiotic resistance coupled with a reduction in new antibiotic development has placed significant burdens on global health care. Resistant bacterial pathogens such as methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus are leading causes of community- and hospital-acquired infection and present a significant clinical challenge. These pathogens have acquired resistance to broad classes of antimicrobials. Furthermore, Streptococcus pyogenes, a significant disease agent among Indigenous Australians, has now acquired resistance to several antibiotic classes. With a rise in antibiotic resistance and reduction in new antibiotic discovery, it is imperative to investigate alternative therapeutic regimens that complement the use of current antibiotic treatment strategies. As stated by the WHO Director-General, "On current trends, common diseases may become untreatable. Doctors facing patients will have to say, Sorry, there is nothing I can do for you.

    Atlas of group A streptococcal vaccine candidates compiled using large-scale comparative genomics.

    Get PDF
    Group A Streptococcus (GAS; Streptococcus pyogenes) is a bacterial pathogen for which a commercial vaccine for humans is not available. Employing the advantages of high-throughput DNA sequencing technology to vaccine design, we have analyzed 2,083 globally sampled GAS genomes. The global GAS population structure reveals extensive genomic heterogeneity driven by homologous recombination and overlaid with high levels of accessory gene plasticity. We identified the existence of more than 290 clinically associated genomic phylogroups across 22 countries, highlighting challenges in designing vaccines of global utility. To determine vaccine candidate coverage, we investigated all of the previously described GAS candidate antigens for gene carriage and gene sequence heterogeneity. Only 15 of 28 vaccine antigen candidates were found to have both low naturally occurring sequence variation and high (>99%) coverage across this diverse GAS population. This technological platform for vaccine coverage determination is equally applicable to prospective GAS vaccine antigens identified in future studies

    Fax +41 61 306 12 34 E-Mail karger@karger

    Get PDF
    sity of differing M types is proposed. The vast majority of GAS infection is benign. Nonetheless, many divergent M types possess limited capacity to cause invasive infection. M1T1 GAS readily switch to a covRS mutant form that is neutrophil resistant and frequently associated with systemic infection. Whilst non-M1 GAS are shown in this study to less frequently accumulate covRS mutations in vivo, such mutants are isolated from invasive infections and exhibit neutrophil resistance and enhanced virulence. The reduced capacity of non-M1 GAS to switch to the hypervirulent covRS mutant form provides an explanation for the comparatively less frequent isolation of non-M1 serotypes from invasive human infections. Key Words Animal models ؒ Bacteriology ؒ Immunity ؒ Innate ؒ Neutrophils ؒ Streptococcus ؒ Virulence factors ؒ Invasive infection Abstract Group A Streptococcus (GAS) causes rare but life-threatening syndromes of necrotizing fasciitis and toxic shock-like syndrome in humans. The GAS serotype M1T1 clone has globally disseminated, and mutations in the control of virulence regulatory sensor kinase (covRS) operon correlate with severe invasive disease. Here, a cohort of non-M1 GAS was screened to determine whether mutation in covRS triggers systemic dissemination in divergent M serotypes. A GAS disease model defining parameters governing invasive propen

    Stability of the octameric structure affects plasminogen-binding capacity of streptococcal enolase

    Get PDF
    Group A Streptococcus (GAS) is a human pathogen that has the potential to cause invasive disease by binding and activating human plasmin(ogen). Streptococcal surface enolase (SEN) is an octameric α-enolase that is localized at the GAS cell surface. In addition to its glycolytic role inside the cell, SEN functions as a receptor for plasmin(ogen) on the bacterial surface, but the understanding of the molecular basis of plasmin(ogen) binding is limited. In this study, we determined the crystal and solution structures of GAS SEN and characterized the increased plasminogen binding by two SEN mutants. The plasminogen binding ability of SENK312A and SENK362A is ~2- and ~3.4-fold greater than for the wild-type protein. A combination of thermal stability assays, native mass spectrometry and X-ray crystallography approaches shows that increased plasminogen binding ability correlates with decreased stability of the octamer. We propose that decreased stability of the octameric structure facilitates the access of plasmin(ogen) to its binding sites, leading to more efficient plasmin(ogen) binding and activation

    Streptococcus pyogenes Hijacks Host Glutathione for Growth and Innate Immune Evasion

    Get PDF
    The nasopharynx and the skin are the major oxygen-rich anatomical sites for colonization by the human pathogen Streptococcus pyogenes (group A Streptococcus [GAS]). To establish infection, GAS must survive oxidative stress generated during aerobic metabolism and the release of reactive oxygen species (ROS) by host innate immune cells. Glutathione is the major host antioxidant molecule, while GAS is glutathione auxotrophic. Here, we report the molecular characterization of the ABC transporter substrate binding protein GshT in the GAS glutathione salvage pathway. We demonstrate that glutathione uptake is critical for aerobic growth of GAS and that impaired import of glutathione induces oxidative stress that triggers enhanced production of the reducing equivalent NADPH. Our results highlight the interrelationship between glutathione assimilation, carbohydrate metabolism, virulence factor production, and innate immune evasion. Together, these findings suggest an adaptive strategy employed by extracellular bacterial pathogens to exploit host glutathione stores for their own benefit. IMPORTANCE During infection, microbes must escape host immune responses and survive exposure to reactive oxygen species produced by immune cells. Here, we identify the ABC transporter substrate binding protein GshT as a key component of the glutathione salvage pathway in glutathione-auxotrophic GAS. Host-acquired glutathione is crucial to the GAS antioxidant defense system, facilitating escape from the host innate immune response. This study demonstrates a direct link between glutathione assimilation, aerobic metabolism, and virulence factor production in an important human pathogen. Our findings provide mechanistic insight into host adaptation that enables extracellular bacterial pathogens such as GAS to exploit the abundance of glutathione in the host cytosol for their own benefit

    Stability of the octameric structure affects plasminogen-binding capacity of Streptococcal enolase

    No full text
    Group A Streptococcus (GAS) is a human pathogen that has the potential to cause invasive disease by binding and activating human plasmin(ogen). Streptococcal surface enolase (SEN) is an octameric alpha-enolase that is localized at the GAS cell surface. In addition to its glycolytic role inside the cell, SEN functions as a receptor for plasmin(ogen) on the bacterial surface, but the understanding of the molecular basis of plasmin(ogen) binding is limited. In this study, we determined the crystal and solution structures of GAS SEN and characterized the increased plasminogen binding by two SEN mutants. The plasminogen binding ability of SENK312A and SENK362A is similar to 2- and similar to 3.4-fold greater than for the wild-type protein. A combination of thermal stability assays, native mass spectrometry and X-ray crystallography approaches shows that increased plasminogen binding ability correlates with decreased stability of the octamer. We propose that decreased stability of the octameric structure facilitates the access of plasmin(ogen) to its binding sites, leading to more efficient plasmin (ogen) binding and activation
    corecore