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sity of differing M types is proposed. The vast majority of 
GAS infection is benign. Nonetheless, many divergent M 
types possess limited capacity to cause invasive infection. 
M1T1 GAS readily switch to a  covRS  mutant form that is neu-
trophil resistant and frequently associated with systemic in-
fection. Whilst non-M1 GAS are shown in this study to less 
frequently accumulate  covRS  mutations in vivo, such mu-
tants are isolated from invasive infections and exhibit neu-
trophil resistance and enhanced virulence. The reduced ca-
pacity of non-M1 GAS to switch to the hypervirulent  covRS  
mutant form provides an explanation for the comparatively 
less frequent isolation of non-M1 serotypes from invasive 
human infections.  Copyright © 2010 S. Karger AG, Basel 
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 Abstract 

 Group A  Streptococcus  (GAS) causes rare but life-threatening 
syndromes of necrotizing fasciitis and toxic shock-like syn-
drome in humans. The GAS serotype M1T1 clone has glob-
ally disseminated, and mutations in the control of virulence 
regulatory sensor kinase  (covRS)  operon correlate with se-
vere invasive disease. Here, a cohort of non-M1 GAS was 
screened to determine whether mutation in  covRS  triggers 
systemic dissemination in divergent M serotypes. A GAS dis-
ease model defining parameters governing invasive propen-
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 Introduction 

 Group A  Streptococcus  (GAS) causes 700 million in-
fections each year, resulting in over 500,000 deaths. Inva-
sive GAS infections account for  1 600,000 disease epi-
sodes, incurring a death rate of approximately 25%  [1] . 
Over the past 30 years, a resurgence of life-threatening 
invasive GAS pathologies has been documented, in paral-
lel with the emergence of the globally disseminated M1T1 
clone  [2, 3] . The M1T1 clone remains the most frequently 
isolated M serotype from cases of invasive GAS infection 
and also from simple pharyngitis  [4] . Nonetheless, other 
GAS serotypes cause invasive infections in Western pop-
ulations, and GAS invasive disease in indigenous popula-
tions, such as Aboriginal communities of Northern Aus-
tralia, is often associated with multiple M serotypes  [5] .

  Historically, it is documented that hyperencapsulated 
GAS isolates are associated with invasive human infec-
tion and increased virulence in murine models  [6–10] . 
Similarly, an inverse correlation has been described be-
tween SpeB production and disease severity in both hu-
man clinical disease and in murine models  [11, 12] . In the 
GAS M1T1 clone, mutations in the control of virulence 
regulatory sensor kinase  (covRS ; alternatively designated 
 csrRS)  operon are selected for in vivo, and result in up-
regulation of capsule, loss of SpeB expression, increased 
disease severity in murine infection models and are more 
frequently associated with severe human invasive disease 
 [10, 13–15] .

  The GAS M1T1 clone is distinguished from closely re-
lated M1 strains by the acquisition of the bacteriophage-
encoded DNase Sda1 and superantigen SpeA  [16, 17] . Hu-
man neutrophil-mediated killing of GAS selects for the 
neutrophil-resistant  covRS  mutant form of M1T1. The ac-
quisition of the bacteriophage-encoded  sda1  gene provid-
ed M1T1 with enhanced capacity to switch to the  covRS  
mutant form  [14] , as Sda1 mediates escape from neutro-
phil extracellular traps  [18, 19] . The loss of SpeB-mediat-
ed proteolytic degradation in vivo, as a result of  covRS  
mutation, preserves expression of Sda1 and other viru-
lence factors  [20] , allowing GAS to recruit and activate 
the broad-spectrum human protease plasmin on the bac-
terial surface, resulting in extensive tissue destruction 
and triggering systemic dissemination  [11, 14] .

  While significant advances in the understanding of 
GAS M1T1 invasive disease initiation have been made, 
parameters governing invasive propensity of other M 
types have not been elucidated. Recently, analysis of GAS 
isolates of varying M type documented an association be-
tween invasive clinical isolates and mutations in genes 

encoding GAS global gene regulators  (covRS / csrRS  and 
 ropB / rgg)   [21] . In this study, we have examined a set of 
non-M1 serotype GAS isolates to determine whether 
such mutations trigger systemic dissemination in diver-
gent M types. A model describing the invasive potential 
of differing M types is proposed.

  Materials and Methods 

 GAS Strains and Culture Conditions 
 Clinical GAS isolates examined in this study have been de-

scribed previously ( table 1 ). Routine culture of GAS was conduct-
ed in stasis at 37   °   C in Todd-Hewitt broth supplemented with 1% 
(w/v) yeast extract or on horse-blood agar. GAS cultures for use 
in microarray experiments were propagated in Todd-Hewitt 
broth supplemented with 1.5% (w/v) yeast extract.

  SpeB Activity Assays 
 SpeB cysteine protease activity in cell-free stationary-phase 

supernatants was determined using the chromogenic substrate 
N-benzoyl-Pro-Phe-Arg- p -nitroanilide-hydrochloride (Sigma), 
according to the method of Hytönen et al.  [22] . To screen large 
numbers of GAS colonies recovered following subcutaneous mu-
rine passage (n = 1,500), single colonies were transferred to des-
ignated grid locations on Columbia agar plates supplemented 
with 15% (v/v) commercial skim milk (Devondale) and assayed 
for secreted SpeB activity as described by Ashbaugh et al.  [23] .

  Western Blot Analysis 
 Stationary-phase supernatant proteins were concentrated 

37.5-fold in 100 m M  Tris (pH 7.6) by precipitation with 10% tri-
chloroacetic acid. SpeB protein was then detected using Western 
blot analysis essentially as previously described  [11] .

  Quantification of Hyaluronic Acid Capsule Biomass 
 Overnight cultures in Todd-Hewitt broth supplemented with 

1% (w/v) yeast extract were subinoculated 1:   14 and grown to mid-
logarithmic phase (OD 600  0.6). Capsule extraction and quantifi-
cation were conducted using the method of Ashbaugh and Wes-
sels  [24] .

  DNA Sequence Analysis of the covRS Locus 
 The method for mapping mutations in the GAS  covRS  operon 

was as described previously  [14] . Genomic DNA was isolated us-
ing the QIAGEN DNeasy Blood and Tissue Kit (Qiagen) accord-
ing to the manufacturer’s guidelines. For each operon, sequences 
were assembled in Chromas Pro v1.33 (Technelysium Pty Ltd) and 
aligned with the intact  covRS  operon of the M1T1 isolate 5448 
(BioEdit v7.0.9.0; Ibis Biosciences).

  Microarray Design and Production 
 An oligonucleotide microarray with probes representing M1 

core ORFeome in addition to ORFs representing various M1, M3, 
M18 and  Streptococcus dysgalactiae  prophages was used in this 
study. The microarray was an expansion of one described previ-
ously  [25] . Oligomers (70mers) were obtained from Dr. Kevin Mc-
Iver and Dr. June Scott, and printed in the Molecular Resource 
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Center, University of Tennessee Health Science Center by the use 
of MicroGrid II (Genomic Solutions). Additional 70mers, repre-
senting M1T1-specific prophages and prophage 3396 of  S. 
dysgalac tiae , were designed in batch according to the same design 
criteria applied for the other oligomers (Oligo Wiz 2.0, http://
www.cbs.dtu.dk/services/OligoWiz) and obtained from Integrat-
ed DNA Technologies.

  DNA-DNA Microarray 
 DNA-DNA microarray experiments were conducted in dye-

flipped biological triplicates for each GAS isolate, and all steps 
involving Alexa Fluor� dyes were conducted in the dark. RNA-
free genomic DNA was extracted from overnight liquid cultures 
by a modified phenol-chloroform procedure  [17]  and randomly 
sheared into  ! 1-kb fragments using a Misonix 3000 cup-horn 
sonicator and Branson Sonifier� 250. Sheared DNA samples were 
fluorescently labeled with the BioPrime� Total Genomic Labeling 

System (Invitrogen) as described by the manufacturer. In each 
hybridization reaction, equal amounts of Alexa Fluor� 3-labeled 
and Alexa Fluor� 5-labeled samples from different pairs of iso-
lates were combined with hybridization buffer (Genisphere) and
applied to the microarray slide. Following incubation at 55   °   C for
16 h, glass slides were washed, dried via centrifugation and 
scanned using a GenePix 4000B scanner (Axon Instruments Inc.).

  DNA Microarray Data Analysis 
 The GenePixPro 4.0 software (Axon Instruments Inc.) was 

used for primary analysis of the scanned GenePix files. The fluo-
rescent intensities were then normalized to the median intensity 
for each channel. Data from all probes representing the same gene 
were averaged, and a mean hybridization score was calculated for 
each gene. An average threshold of 40 median-normalized fluo-
rescence units was selected, under which a gene was called ‘ab-
sent’.

Table 1.  Characteristics of GAS isolates and mutant strains utilized

Isolate emm type Isolate origin Clinical origin Reference or source

5448 1.0 USA invasive; STSS/NF [20]
5448AP 1.0 animal passage generated during murine passage [20]
NS13 53 Australia invasive; blood [37]
NS88.2 98.1 Australia invasive; blood [37]
NS179 9.1 Australia invasive; blood; pustules on foot [37]
NS210 22 Australia invasive; diabetic ulcer with fever [37]
NS223 91 Australia invasive; blood [37]
NS452 25 Australia invasive; cellulitis; wound [37]
NS455 52 Australia invasive; blood [37]
NS501 14 Australia invasive; blood [37]
A20 23 Japan invasive; blood [41]
NS730 90 Australia invasive; nf; pus from left hip [37]
NS733 90 Australia invasive; nf; wrist aspirate [37]
NS931 69 Australia invasive; nf; blood [37]
NS1133 101 Australia invasive; blood [37]
ALAB49 53 USA superficial; impetigo; skin lesion [42]
NS10 53 Australia superficial; throat swab [37]
NS14 102 Australia superficial; post-operative wound [37]
NS32 101 Australia superficial; wound infection [37]
NS50.1 108 Australia superficial; wound infection [37]
NS53 71 Australia superficial; fever [37]
NS59 53 Australia superficial; wound infection [37]
NS236 77 Australia superficial; sore throat; throat swab [37]
NS253 52 Australia superficial; wound infection [37]
NS265 56 Australia superficial; wound infection [37]
NS297 44/61 Australia superficial; skin sore [37]
NS474 58 Australia superficial; wound infection [37]
NS488 12 Australia superficial; sinusitis; pharyngeal pus [37]
NS836 ck249 Australia superficial; wound infection [37]
NS88.2rep 98.1 NA isogenic covS repaired NS88.2 strain this study
NS88.2covS 98.1 NA reverse complemented NS88.2 covS mutant this study

C linical origin classified as invasive if infected tissue is normally sterile in a healthy host. STSS = Streptococcal toxic shock-like 
syndrome; NF = necrotising fasciitis; NA = not applicable.
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  Transcriptional Microarray 
 Overnight GAS cultures were sub-inoculated 1:   10 into fresh 

prewarmed media and grown to mid-logarithmic phase (OD 600  
0.4). Bacteria were concentrated 20-fold in Buffer RLT (Qiagen) 
containing  � -mercaptoethanol, lysed by mechanical disruption 
in Lysing matrix B tubes (Q-Biogene) with a FastPrep FP120 Ho-
mogenizer (Q-Biogene) and flash frozen for storage at –80   °   C. 
Bacterial RNA was extracted using the RNeasy Mini Kit (Qiagen), 
treated with TURBO DNA- free TM DNase to remove contaminat-
ing genomic DNA (Ambion), re-concentrated on RNeasy col-
umns (Qiagen) and converted to dendrimer-labeled cDNA with 
the Genisphere 3DNA Array 900MPX Kit as described by the cor-
responding manufacturer. Dendrimer-labeled cDNA samples 
from different pairs of isolates were combined and hybridized to 
the microarray slide for 16 h at 55   °   C. Slides were washed to re-
move unbound cDNA and labeled with dendrimer-targeted Alexa 
Fluor 546 and Alexa Fluor 647 dyes for 5 h at 55   °   C. Following a 
final wash to remove excess fluorescent dye, slides were coated in 
DyeSaver 2 (Genisphere) to preserve the fluorescent signal, and 
subsequently polished with toluene/acetone (3:   1, v/v) to minimize 
background fluorescence immediately prior to scanning in a
GenePix 4000B scanner (Axon Instruments Inc.). Scanned im-
ages were processed with GenePixPro 4.0 software (Axon Instru-
ments Inc.), and all transcriptional and statistical analyses under-
taken in silico using GeneSpring GX 10 (Agilent Technologies). 
All transcriptional microarray data were submitted to the NCBI 
Gene Expression Omnibus (GEO) according to the MIAME stan-
dards (GEO accession No. GSE23825).

  Neutrophil Killing Assays 
 The capacity of GAS isolates to survive during co-incubation 

with human neutrophils in vitro was determined as described by 
Hollands et al.  [25] . Briefly, 2  !  10 4  colony-forming units (CFU) 
of mid-logarithmic-phase bacteria were incubated with 2  !  10 5  
neutrophils in RPMI with 2% heat-inactivated plasma for 30 min 
at 37   °   C. The final percent survival was calculated following com-
parison to the same bacterial culture incubated under the same 
conditions in the absence of neutrophils.

  In vivo Phase-Switching 
 To examine the capacity for a phenotypic phase switch through 

 covRS  mutation in vivo, sublethal doses of SpeB-positive GAS iso-
lates, in the order of 10 7  CFU per dose, were subcutaneously ad-
ministered in sterile 0.7% (w/v) NaCl to the right flank of C57BL/
J6 mice less than 8 months of age (10 animals per isolate). On the 
third day after infection, mice were sacrificed by CO 2  asphyxia-
tion and the infected cutaneous lesions surgically removed. In 
vivo passaged bacteria were recovered from murine lesions on 
horse-blood agar and single colonies assayed for SpeB status as 
outlined above.

  Transgenic Murine Infection Model 
 Humanized plasminogen transgenic  (Tg+)   AlbPLG1  mice, het-

erozygous for the human plasminogen gene  [26] , served as the 
animal model for determining GAS invasive potential as previ-
ously described  [14] . GAS isolates were grown to logarithmic 
phase (OD 600  0.6), washed with sterile 0.7% (w/v) NaCl and ap-
propriately diluted to prepare the inoculum. Final dose of viable 
bacteria was confirmed using a plate-based serial dilution cul-
tured on horse-blood agar. For each GAS isolate, a cohort of 10 

humanized mice were subcutaneously challenged in the right 
flank and mortality was documented over a 10-day period.

  Restoration of   covS   in NS88.2 
 The  covS  gene from NS88.2 was amplified using primers

pHYcovSF (5 � -gggggatccatggaaaatcagaaacaaaaacag-3 � ) and
pHYcovSR (5 � -ggggaattcctaactctctttagactgggcc-3 � ). The resulting 
amplicon was cloned into the temperature-sensitive vector 
pHY304 using  Bam HI/ Eco RI restriction-enzyme digestion and 
ligation with T4 DNA ligase. Site-directed mutagenesis of the 
 adenine nucleotide at position 581 to guanine was performed 
 according to the method of Sanderson-Smith et al.  [27] , using 
primers pHY covsa581g F (5 � -gccaaataactcaacaactagtagccaaaac-
agcagtcatgc-3 � ) and pHY covsa581g R (5 � -gcaagactgctgttttggctact-
ag ttgttgagttatttggc-3 � ). The resulting plasmids (pHY covS  and 
 pHY rep ) were transformed into  Escherichia coli  MC1061 using 
standard electroporation procedures. Allelic replacement mu-
tants were constructed as described previously  [28] . The  covRS  
operons of the isogenic mutants NS88.2 rep  and NS88.2 covS  were 
sequenced as outlined above to confirm both the presence of the 
desired mutation and the integrity of the  covRS  operon.

  GAS Surface Plasmin Activity Assays 
 GAS were incubated in human plasma as described previous-

ly  [11] . Overnight growth in Todd-Hewitt broth supplemented 
with 1% (w/v) yeast extract was diluted to OD 600  0.5 and co-incu-
bated with human plasma at 37   °   C for 3 h. GAS were twice washed 
with PBS, 0.01% gelatin and 0.01  M  EDTA, prior to resuspension 
in PBS and 0.01% gelatin. Plasmin activity was determined using 
the chromogenic substrate Spectrozyme PL (American Diagnos-
tica).

  Results 

 Expression of SpeB, Capsule Production and covRS 
Mutation of Non-M1 GAS 
 A range of GAS clinical isolates of differing  emm  types 

from invasive and benign infections were selected for this 
study ( table 1 ). The well-characterized M1T1 clinical iso-
late 5448 and the natural isogenic  covS  mutant 5448AP 
 [14]  were included for comparison. With the exception of 
3 strains, 5448AP, NS88.2 and A20, each of the GAS iso-
lates described here expressed and secreted active SpeB at 
the stationary phase of growth   ( fig. 1 a, b). An inverse cor-
relation between SpeB expression and hyaluronic acid 
capsule production was observed, with 5448AP, NS88.2 
and A20 hyperencapsulated with respect to all SpeB-pos-
itive GAS isolates ( fig. 1 c). GAS M1T1 strain 5448AP con-
tains an adenine insertion at nucleotide position 887 in 
the ORF of the  covS  gene, resulting in the premature 
truncation of the translated CovS protein  [14] . Corre-
spondingly, DNA sequence analysis of the SpeB-negative 
hyperencapsulated strains NS88.2 and A20 revealed a 
guanine to adenine substitution at position 581 in the 
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  Fig. 1.  Molecular and phenotypic analyses of GAS isolates repre-
senting distinct M serotypes.  a  SpeB activity in cell-free station-
ary-phase supernatants of invasive (filled bars) and uncomplicat-
ed infection (open bars) GAS isolates. Isolate 5448 represents the 
globally disseminated M1T1 clone, while 5448AP is a hyperviru-
lent animal passaged variant of 5448  [14] .  b  Western blot detec-
tion of SpeB in stationary-phase GAS supernatants. The 28-kDa 
mature SpeB protease is indicated with an arrowhead.  c  Hyal-

uronic acid capsule biomass of mid-logarithmic-phase invasive 
(filled bars) and uncomplicated infection (open bars) GAS iso-
lates.  d  Schematic representation of the  covRS  operon. DNA se-
quence analysis confirmed the presence of inactivating  covS  mu-
tations in the SpeB-deficient isolates A20, NS88.2 and 5448AP. 
The nature and nucleotide positions of the mutations in each iso-
late are indicated by the corresponding arrowheads. 
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 covS  gene of NS88.2 and a 5-base pair deletion between 
positions 1,215 and 1,219 of the A20  covS  gene ( fig. 1 d). 
Each mutation results in premature truncation of the 
translated CovS protein.

  DNA Microarray and Transcriptomic Analyses 
 Three GAS strains with intact  covRS  (5448, ALAB49 

and NS730) and 3  covS  mutant forms (5448AP, NS88.2 
and A20) were subjected to DNA microarray and tran-
scriptomic analyses. DNA microarray identified 1,580 
genes representing the core genome of the 6 GAS strains 
under examination (online suppl. table  1 and online
suppl. fig.  1, www.karger.com/doi/10.1159/000317640). 

The bacteriophage-encoded  sda1  gene, which confers on 
M1T1 GAS the capacity to switch to the  covRS  mutant 
form at high frequency  [14] , was not present in the ge-
nomes of the non-M1 GAS strains (online suppl. table 1 
and online suppl. fig. 1). Only ubiquitous genes were in-
cluded in subsequent transcriptomic analyses undertak-
en on GAS strains grown to mid-logarithmic phase. The 
virulence-related genes found to be strongly upregulated 
in the  covS  mutant strains, in comparison to the  covRS  
intact strain 5448, include genes of the  has  operon ( hasA , 
 hasB  and  hasC ; capsule biosynthesis),  slo  (streptolysin O) 
and the  spyA  exotoxin. Corroborating studies on M1T1 
 covS  mutation  [13] , the positive regulators of SpeB activ-
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  Fig. 2.  In vitro mid-logarithmic phase 
transcriptional microarray analysis of 
 covRS  intact and  covRS  mutant non-M1 
GAS.  a  log 10 -fold differential expression of 
virulence-associated and regulatory genes 
of the  covS  mutants 5448AP (filled circles), 
A20 (open circles) and NS88.2 (shaded cir-
cles) compared to the  covRS  intact M1T1 
strain 5448. Selected genes are significant-
ly differentially expressed in 5448AP with 
respect to 5448 (p  !  0.05).  b  Principal com-
ponent analysis on the non-M1 isolates 
ALAB49 (M53) and NS730 (M90), NS88.2 
(M98.1) and A20 (M23), in addition to the 
M1T1 reference strains 5448 and 5448AP, 
revealed 2 distinct expression profiles in 
this 6-isolate strain set. Solid-line boxes 
placed in the plot area highlight strain 
clusters. The dashed-line box highlights 
the M1T1 strains 5448 and 5448AP, which, 
apart from a single base insertion in the 
5448AP  covS  gene, harbor identical ge-
nomes. 
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ity and expression  ropA  and  ropB   [29, 30] , in addition to 
genes of the  sag  operon  (sagB ,  sagC  and  sagH) , involved 
in streptolysin S production  [31] , were found to be down-
regulated in the  covS  mutant strains studied here ( fig. 2 a). 
No significant SpeB expression was detected at the mid-
logarithmic phase of growth, in accordance with previ-
ous studies  [32] . Principal component analysis of these 
transcriptomic data revealed 2 distinct clusters of  covRS  
intact strains and  covS  mutant forms ( fig. 2 b). These data 

suggest that differing M types harboring  covS  mutations 
express related transcriptomic profiles.

  Neutrophil Resistance, SpeB Switching and Virulence 
 In comparison with the  covRS  intact strains 5448, 

NS730 and ALAB49, the hyperencapsulated  covS  mutant 
strains 5448AP, NS88.2 and A20 displayed enhanced re-
sistance to human neutrophil killing ( fig.  3 a). Of the 
 covRS  intact strains, the M1T1 strain 5448 readily 
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  Fig. 3.  Characterization of the  covRS  intact isolates ALAB49 
(M53) and NS730 (M90), and the  covS  mutant isolates NS88.2 
(M98.1) and A20 (M23), in comparison with the M1T1 reference 
strains 5448 and 5448AP.  a  The percent survival of GAS isolates 
during co-culture with human neutrophils in vitro.  b  The capac-
ity of SpeB-positive isolates to phase-switch to a SpeB-negative 
phenotype was assessed following a 3-day subcutaneous passage 

in C57BL/J6 mice. Each data point represents the percent of SpeB-
negative    covRS  mutants recovered from the infection site of each 
mouse (n = 10 mice per strain). Subcutaneous infection of human-
ized plasminogen transgenic  AlbPLG1  (n = 10) 5448 (3.9  !  10 7  
CFU/dose) (   c ), ALAB49 (3.7  !  10 8  CFU/dose) ( d ), NS730 (2.2  !  
10 8  CFU/dose) ( e ), 5448AP (5.1  !  10 7  CFU/dose) ( f ), NS88.2 (2.0 
 !  10 7  CFU/dose) ( g ) and A20 (1.2  !  10 8  CFU/dose) ( h ).   
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switched to the SpeB-negative  covRS  mutant form in vivo 
( fig. 3 b), in accordance with previous studies  [11, 14, 20] . 
However, the  covRS  intact non-M1 strains NS730 and 
ALAB49 only infrequently switch to a  covRS  mutant form 
in vivo ( fig. 3 b). Utilizing the humanized plasminogen 
transgenic mouse line  AlbPLG1 , we assessed the viru-
lence of both  covRS  intact and mutant GAS strains. The 
M1T1 strain 5448, which has the capacity to switch at a 
high frequency to the  covRS  mutant form in vivo, was 
virulent in this mouse model ( fig. 3 c), corroborating pre-
vious work  [11, 14] . The  covRS  intact strains NS730 and 
ALAB49, which infrequently switch to the  covRS  mutant 
form ( fig. 3 b), failed to establish a lethal infection ( fig. 3 d, 
e). Each of the  covS  mutant strains, 5448AP, NS88.2 and 
A20, were highly virulent ( fig. 3 f–h). These data suggest 

that while  covRS  mutation may occur only infrequently 
in non-M1 GAS, such  covRS  mutant forms are hypervir-
ulent.

  Repair of the covS Mutation in GAS Strain NS88.2 
and Phenotypic Characterization 
 In order to investigate whether low-frequency switch-

ing of non-M1 GAS results in the hypervirulent  covRS  
mutant form, the non-M1 GAS strain NS88.2 harboring 
a  covS  mutation was chosen. The adenine nucleotide 
point mutation at position 581 in the NS88.2  covS  gene 
( fig. 1 d) was converted to guanine by allelic replacement 
mutagenesis to construct strain NS88.2 rep , with an intact 
or ‘repaired’  covS  gene. Then, in order to fulfill Koch’s 
molecular postulates  [33] , allelic replacement mutagene-
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  Fig. 4.  Characterization of NS88.2  covS  mutant (NS88.2 and 
NS88.2 covS ) and intact (NS88.2 rep ) isogenic strains.  a  SpeB activ-
ity in stationary-phase GAS supernatants.  b  Western blot detec-
tion of SpeB in stationary-phase supernatants. The mature SpeB 
protease is indicated with an arrowhead.  c  Hyaluronic acid cap-
sule biomass of mid-logarithmic phase isogenic GAS strains.
 d  Acquired surface plasmin activity following incubation in
human plasma.  e  Percent survival following co-culture with hu-

man neutrophils in vitro.  f  The capacity of the SpeB-positive 
NS88.   2rep  to phase-switch to a SpeB-negative phenotype follow-
ing a 3-day subcutaneous passage in C57BL/J6 mice.          g  Subcutane-
ous infection of humanised plasminogen transgenic                                    AlbPLG1  
mice (n = 10 mice per strain) with NS88.2 (1.0  !  10 7  CFU/dose), 
NS88.2 rep  (1.3  !  10 7  CFU/dose) and NS88.2 covS  (9.8  !  10 6  CFU/
dose). 
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sis was undertaken on NS88.2 rep  to restore the original 
adenine nucleotide point mutation, resulting in strain 
NS88.2 covS .

  Repair of the  covS  mutation restored SpeB expression 
and activity in NS88.2 rep , while NS88.2 and NS88.2 covS  
remained SpeB-negative ( fig. 4 a, b). NS88.2 and NS88.2 covS  
were hyperencapsulated in comparison to NS88.2 rep 
 ( fig. 4 c), and acquired substantial surface plasmin activ-
ity following incubation in human plasma ( fig. 4 d). Both 
NS88.2 and NS88.2 covS  also displayed enhanced resis-
tance to killing by human neutrophils ( fig. 4 e). The  covS  
intact NS88.2 rep  displayed only limited capacity to switch 
to the more virulent  covRS  mutant form ( fig. 4 f) and was 
not virulent in comparison to NS88.2 and NS88.2 covS  in 
 AlbPLG1  mice ( fig. 4 g). These data support the hypothe-
sis that non-M1 GAS serotypes switch less frequently to 
the hypervirulent  covRS  mutant form, providing an ex-
planation for the comparatively less frequent isolation of 
non-M1 serotypes from invasive human infections.

  Discussion 

 Severe group A streptococcal invasive disease pro-
gresses rapidly and results in high patient morbidity, with 
approximately one quarter of cases being fatal despite the 
susceptibility of the pathogen to antibiotic treatment  [1, 
34] . Host genetic factors  [35]  and the human fibrinolytic 
protease plasmin  [26, 36]  have both been documented as 
contributing to GAS invasive disease potential. Whilst 
progression of GAS disease from benign mucosal infec-
tions to invasive disease occurs infrequently, the M1T1 
clone is clinically and epidemiologically associated with 
deep tissue infections in Western countries  [4] . Muta-
tions in the M1T1  covRS  locus result in a hyperencapsu-
lated, SpeB-negative, hypervirulent phenotype, and are 
correlated with invasive diagnosis in patients  [10, 12, 13] . 
The capacity of M1T1 to switch to the  covRS  mutant form 
at high frequency may result from acquisition of the 
phage borne  sda1  gene by M1T1 which confers resistance 
to neutrophil killing  [14] .

  The contribution of similar mutations in  covRS  to in-
vasive disease potential of non-M1 GAS remains largely 
unknown. Many differing M types have been associated 
with invasive infections  [21, 34, 37, 38] . A naturally occur-
ring mutation in the  covR  gene of an M3 isolate from a 
case of streptococcal toxic shock-like syndrome has been 
described. This  covR  mutation was associated with in-
creased capsule expression and enhanced virulence  [39] . 
Mutation in  covR , associated with enhanced expression 

of the interleukin-8 cleaving protease SpyCEP, has also 
been observed in an M81 serotype GAS isolated from a 
lethal case of bacteremia and necrotizing fasciitis  [40] . A 
correlation between mutation in global gene regulators 
 (covRS  and  ropB)  and invasive pathology has been docu-
mented in a range of M types. In comparison to muta-
tions in  ropB , inactivation of  covS  is clinically predomi-
nant and results in greater virulence in murine infection 
models  [21] .

  In this study, a variety of non-M1 GAS strains from 
invasive disease episodes were examined, including iso-
lates representing the  emm  sequence types   14,   22,   23,   25,  
 52,   53,   69,   90,   91,   98.1 and   101. These included SpeB-pos-
itive isolates and SpeB-negative  covS  mutant forms. We 
propose that divergent M types with intact  covRS  possess 
an underlying capacity to cause invasive infection. In 
each serotype background, the  covRS  mutant form repre-
sents a more virulent state, which has greater propensity 
to cause invasive infection.

  Using allelic replacement mutagenesis, we demon-
strate that repair of the  covS  defect in the invasive  emm 98.1 
GAS strain NS88.2 ( covS  mutant form) renders the iso-
genic  covS  intact strain NS88.2 rep  SpeB-positive, suscep-
tible to neutrophil killing and less able to accumulate sur-
face plasmin activity following growth in human plasma. 
The  covS  intact NS88.2 rep  strain was also found to be 
avirulent in the humanized plasminogen transgenic 
mouse model. In comparison to the M1T1 GAS  covS  in-
tact strain 5448, we propose that the lack of virulence of 
NS88.2 rep  is due to the reduced capacity of this strain to 
switch to the invasive  covRS  mutant form in vivo. The 
lower frequency of switching to the  covS  mutant form 
limits the number of these invasive variants at the site of 
local infection. This lower frequency of switching may 
reflect the absence of the  sda1  gene in this genetic back-
ground. The reduced capacity of non-M1 GAS serotypes 
to switch to the hypervirulent  covRS  mutant form may 
provide an explanation for the comparatively less fre-
quent isolation of non-M1 serotypes from invasive hu-
man infections.
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