82 research outputs found

    Metabolite concentrations, fluxes and free energies imply efficient enzyme usage.

    Get PDF
    In metabolism, available free energy is limited and must be divided across pathway steps to maintain a negative ΔG throughout. For each reaction, ΔG is log proportional both to a concentration ratio (reaction quotient to equilibrium constant) and to a flux ratio (backward to forward flux). Here we use isotope labeling to measure absolute metabolite concentrations and fluxes in Escherichia coli, yeast and a mammalian cell line. We then integrate this information to obtain a unified set of concentrations and ΔG for each organism. In glycolysis, we find that free energy is partitioned so as to mitigate unproductive backward fluxes associated with ΔG near zero. Across metabolism, we observe that absolute metabolite concentrations and ΔG are substantially conserved and that most substrate (but not inhibitor) concentrations exceed the associated enzyme binding site dissociation constant (Km or Ki). The observed conservation of metabolite concentrations is consistent with an evolutionary drive to utilize enzymes efficiently given thermodynamic and osmotic constraints

    Intestinal Microbiota Regulate Xenobiotic Metabolism in the Liver

    Get PDF
    BACKGROUND: The liver is the central organ for xenobiotic metabolism (XM) and is regulated by nuclear receptors such as CAR and PXR, which control the metabolism of drugs. Here we report that gut microbiota influences liver gene expression and alters xenobiotic metabolism in animals exposed to barbiturates. PRINCIPAL FINDINGS: By comparing hepatic gene expression on microarrays from germfree (GF) and conventionally-raised mice (SPF), we identified a cluster of 112 differentially expressed target genes predominantly connected to xenobiotic metabolism and pathways inhibiting RXR function. These findings were functionally validated by exposing GF and SPF mice to pentobarbital which confirmed that xenobiotic metabolism in GF mice is significantly more efficient (shorter time of anesthesia) when compared to the SPF group. CONCLUSION: Our data demonstrate that gut microbiota modulates hepatic gene expression and function by altering its xenobiotic response to drugs without direct contact with the liver

    Genetic determinants of gut microbiota composition and bile acid profiles in mice.

    Get PDF
    The microbial communities that inhabit the distal gut of humans and other mammals exhibit large inter-individual variation. While host genetics is a known factor that influences gut microbiota composition, the mechanisms underlying this variation remain largely unknown. Bile acids (BAs) are hormones that are produced by the host and chemically modified by gut bacteria. BAs serve as environmental cues and nutrients to microbes, but they can also have antibacterial effects. We hypothesized that host genetic variation in BA metabolism and homeostasis influence gut microbiota composition. To address this, we used the Diversity Outbred (DO) stock, a population of genetically distinct mice derived from eight founder strains. We characterized the fecal microbiota composition and plasma and cecal BA profiles from 400 DO mice maintained on a high-fat high-sucrose diet for ~22 weeks. Using quantitative trait locus (QTL) analysis, we identified several genomic regions associated with variations in both bacterial and BA profiles. Notably, we found overlapping QTL for Turicibacter sp. and plasma cholic acid, which mapped to a locus containing the gene for the ileal bile acid transporter, Slc10a2. Mediation analysis and subsequent follow-up validation experiments suggest that differences in Slc10a2 gene expression associated with the different strains influences levels of both traits and revealed novel interactions between Turicibacter and BAs. This work illustrates how systems genetics can be utilized to generate testable hypotheses and provide insight into host-microbe interactions

    Eight common genetic variants associated with serum dheas levels suggest a key role in ageing mechanisms

    Get PDF
    Dehydroepiandrosterone sulphate (DHEAS) is the most abundant circulating steroid secreted by adrenal glands-yet its function is unknown. Its serum concentration declines significantly with increasing age, which has led to speculation that a relative DHEAS deficiency may contribute to the development of common age-related diseases or diminished longevity. We conducted a meta-analysis of genome-wide association data with 14,846 individuals and identified eight independent common SNPs associated with serum DHEAS concentrations. Genes at or near the identified loci include ZKSCAN5 (rs11761528; p = 3.15×10-36), SULT2A1 (rs2637125; p = 2.61×10-19), ARPC1A (rs740160; p = 1.56×10-16), TRIM4 (rs17277546; p = 4.50×10-11), BMF (rs7181230; p = 5.44×10-11), HHEX (rs2497306; p = 4.64×10-9), BCL2L11 (rs6738028; p = 1.72×10-8), and CYP2C9 (rs2185570; p = 2.29×10-8). These genes are associated with type 2 diabetes, lymphoma, actin filament assembly, drug and xenobiotic metabolism, and zinc finger proteins. Several SNPs were associated with changes in gene expression levels, and the related genes are connected to biological pathways linking DHEAS with ageing. This study provides much needed insight into the function of DHEAS

    Age-related transcriptional changes in gene expression in different organs of mice support the metabolic stability theory of aging

    Get PDF
    Individual differences in the rate of aging are determined by the efficiency with which an organism transforms resources into metabolic energy thus maintaining the homeostatic condition of its cells and tissues. This observation has been integrated with analytical studies of the metabolic process to derive the following principle: The metabolic stability of regulatory networks, that is the ability of cells to maintain stable concentrations of reactive oxygen species (ROS) and other critical metabolites is the prime determinant of life span. The metabolic stability of a regulatory network is determined by the diversity of the metabolic pathways or the degree of connectivity of genes in the network. These properties can be empirically evaluated in terms of transcriptional changes in gene expression. We use microarrays to investigate the age-dependence of transcriptional changes of genes in the insulin signaling, oxidative phosphorylation and glutathione metabolism pathways in mice. Our studies delineate age and tissue specific patterns of transcriptional changes which are consistent with the metabolic stability–longevity principle. This study, in addition, rejects the free radical hypothesis which postulates that the production rate of ROS, and not its stability, determines life span

    Sexually dimorphic gene expression in the heart of mice and men

    Get PDF
    The prevalence and clinical manifestation of several cardiovascular diseases vary considerably with sex and age. Thus, a better understanding of the molecular basis of these differences may represent a starting point for an improved gender-specific medicine. Despite the fact that sex-specific differences have been observed in the cardiovascular system of humans and animal models, systematic analyses of sexual dimorphisms at the transcriptional level in the healthy heart are missing. Therefore we performed gene expression profiling on mouse and human cardiac samples of both sexes and young as well as aged individuals and verified our results for a subset of genes using real-time polymerase chain reaction in independent left ventricular samples. To tackle the question whether sex differences are evolutionarily conserved, we also compared sexually dimorphic genes between both species. We found that genes located on sex chromosomes were the most abundant ones among the sexually dimorphic genes. Male-specific expression of Y-linked genes was observed in mouse hearts as well as in the human myocardium (e.g. Ddx3y, Eif2s3y and Jarid1d). Higher expression levels of X-linked genes were detected in female mice for Xist, Timp1 and Car5b and XIST, EIF2S3X and GPM6B in women. Furthermore, genes on autosomal chromosomes encoding cytochromes of the monoxygenase family (e.g. Cyp2b10), carbonic anhydrases (e.g. Car2 and Car3) and natriuretic peptides (e.g. Nppb) were identified with sex- and/or age-specific expression levels. This study underlines the relevance of sex and age as modifiers of cardiac gene expression

    Fumarate Reductase Activity Maintains an Energized Membrane in Anaerobic Mycobacterium tuberculosis

    Get PDF
    Oxygen depletion of Mycobacterium tuberculosis engages the DosR regulon that coordinates an overall down-regulation of metabolism while up-regulating specific genes involved in respiration and central metabolism. We have developed a chemostat model of M. tuberculosis where growth rate was a function of dissolved oxygen concentration to analyze metabolic adaptation to hypoxia. A drop in dissolved oxygen concentration from 50 mmHg to 0.42 mmHg led to a 2.3 fold decrease in intracellular ATP levels with an almost 70-fold increase in the ratio of NADH/NAD+. This suggests that re-oxidation of this co-factor becomes limiting in the absence of a terminal electron acceptor. Upon oxygen limitation genes involved in the reverse TCA cycle were upregulated and this upregulation was associated with a significant accumulation of succinate in the extracellular milieu. We confirmed that this succinate was produced by a reversal of the TCA cycle towards the non-oxidative direction with net CO2 incorporation by analysis of the isotopomers of secreted succinate after feeding stable isotope (13C) labeled precursors. This showed that the resulting succinate retained both carbons lost during oxidative operation of the TCA cycle. Metabolomic analyses of all glycolytic and TCA cycle intermediates from 13C-glucose fed cells under aerobic and anaerobic conditions showed a clear reversal of isotope labeling patterns accompanying the switch from normoxic to anoxic conditions. M. tuberculosis encodes three potential succinate-producing enzymes including a canonical fumarate reductase which was highly upregulated under hypoxia. Knockout of frd, however, failed to reduce succinate accumulation and gene expression studies revealed a compensatory upregulation of two homologous enzymes. These major realignments of central metabolism are consistent with a model of oxygen-induced stasis in which an energized membrane is maintained by coupling the reductive branch of the TCA cycle to succinate secretion. This fermentative process may offer unique targets for the treatment of latent tuberculosis
    corecore