2,385 research outputs found

    Instrumentation and Evaluation of a Pilot Scale Fluidized Bed Biomass Gasification System

    Get PDF
    A pilot scale fluidized bed biomass gasifier developed at Texas A&M University in College Station, Texas was instrumented with thermocouples, pressure transducers and motor controllers for monitoring gasification temperature and pressure, air flow and biomass feeding rates. A process control program was also developed and employed for easier measurement and control. The gasifier was then evaluated in the gasification of sorghum, cotton gin trash (CGT) and manure and predicting the slagging and fouling tendencies of CGT and manure. The expected start-up time, operating temperature and desired fluidization were achieved without any trouble in the instrumented gasifier. The air flow rate was maintained at 1.99 kg/min and the fuel flow rate at 0.95 kg/min. The process control program considerably facilitated its operation which can now be remotely done. The gasification of sorghum, CGT and manure showed that they contained high amounts of volatile component matter and comparable yields of hydrogen, carbon monoxide and methane. Manure showed higher ash content while sorghum yielded lower amount of hydrogen. Their heating values and gas yields did not vary but were considered low ranging from only 4.09 to 4.19 MJ/m3 and from 1.8 to 2.5 m3/kg, respectively. The production of hydrogen and gas calorific values were significantly affected by biomass type but not by the operating temperature. The high values of the alkali index and base-to acid ratio indicated fouling and slagging tendencies of manure and CGT during gasification. The compressive strength profile of pelleted CGT and manure ash showed that the melting (or eutectic point) of these feedstock were around 800 degrees C for CGT and 600 degrees C for manure. Scanning electron microscopy (SEM) images showed relatively uniform bonding behavior and structure of the manure ash while CGT showed agglomeration in its structure as the temperature increased. The instrumentation of the fluidized bed gasifier and employing a process control program made its operation more convenient and safe. Further evaluation showed its application in quantifying the gasification products and predicting the slagging and fouling tendencies of selected biomass. With further development, a full automation of the operation of the gasifier may soon be realized

    Electrostatic tailoring of magnetic interference in quantum point contact ballistic Josephson junctions

    Full text link
    The magneto-electrostatic tailoring of the supercurrent in quantum point contact ballistic Josephson junctions is demonstrated. An etched InAs-based heterostructure is laterally contacted to superconducting niobium leads and the existence of two etched side gates permits, in combination with the application of a perpendicular magnetic field, to modify continuously the magnetic interference pattern by depleting the weak link. For wider junctions the supercurrent presents a Fraunhofer-like interference pattern with periodicity h/2e whereas by shrinking electrostatically the weak link, the periodicity evolves continuously to a monotonic decay. These devices represent novel tunable structures that might lead to the study of the elusive Majorana fermions.Comment: 4.5 pages, 4 color figure

    Circularly Polarized Resonant Rayleigh Scattering and Skyrmions in the ν\nu = 1 Quantum Hall Ferromagnet

    Full text link
    We use the circularly polarized resonant Rayleigh scattering (RRS) to study the quantum Hall ferromagnet at ν\nu = 1. At this filling factor we observe a right handed copolarized RRS which probes the Skyrmion spin texture of the electrons in the photoexcited grounds state. The resonant scattering is not present in the left handed copolarization, and this can be related to the correlation between Skymionic effects, screening and spin wave excitations. These results evidence that RRS is a valid method for the study of the spin texture of the quantum Hall states

    Rhodoliths and rhodolith beds

    Get PDF
    Rhodolith (maërl) beds, communities dominated by free living coralline algae, are a common feature of subtidal environments worldwide. Well preserved as fossils, they have long been recognized as important carbonate producers and paleoenvironmental indicators. Coralline algae produce growth bands with a morphology and chemistry that record environmental variation. Rhodoliths are hard but often fragile, and growth rates are only on the order of mm/yr. The hard, complex structure of living beds provides habitats for numerous associated species not found on otherwise entirely sedimentary bottoms. Beds are degraded locally by dredging and other anthropogenic disturbances, and recovery is slow. They will likely suffer severe impacts worldwide from the increasing acidity of the ocean. Investigations of rhodolith beds with scuba have enabled precise stratified sampling that has shown the importance of individual rhodoliths as hot spots of diversity. Observations, collections, and experiments by divers have revolutionized taxonomic studies by allowing comprehensive, detailed collection and by showing the large effects of the environment on rhodolith morphology. Facilitated by in situ collection and calibrations, corallines are now contributing to paleoclimatic reconstructions over a broad range of temporal and spatial scales. Beds are particularly abundant in the mesophotic zone of the Brazilian shelf where technical diving has revealed new associations and species. This paper reviews selected past and present research on rhodoliths and rhodolith beds that has been greatly facilitated by the use of scuba

    A Hybrid Analytical-Numerical Model Based on the Method of Fundamental Solutions for the Analysis of Sound Scattering by Buried Shell Structures

    Get PDF
    Several numerical and analytical models have been used to study underwater acoustics problems. The most accurate and realistic models are usually based on the solution of the wave equation using a variety of methods. Here, a hybrid numerical-analytical model is proposed to address the problem of underwater sound scattering by an elastic shell structure, which is assumed to be circular and that is buried in a fluid seabed bellow a water waveguide. The interior of the shell is filled with a fluid that may have different properties from the host medium. The analysis is performed by coupling analytical solutions developed both for sound propagation in the waveguide and in the vicinity of the circular hollow pipeline. The coupling between solutions is performed using the method of fundamental solutions. This strategy allows a compact description of the propagation medium while being very accurate and highly efficient from the computational point of view

    A study of local approximation for polarization potentials

    Full text link
    We discuss the derivation of an equivalent \textit{l}-independent polarization potential for use in the optical Schr\"{o}dinger equation that describes the elastic scattering of heavy ions. Three diffferent methods are used for this purpose. Application of our theory to the low energy scattering of the halo nucleus 11^{11}Li from a 12^{12}C target is made. It is found that the notion of \textit{l}-independent polarization potential has some validity but can not be a good substitute for the \textit{l}-dependent local equivalent Feshbach polarization potential.Comment: 8 pages, 4 figure

    High-cadence spectroscopy of M-dwarfs – II. Searching for stellar pulsations with HARPS

    Get PDF
    Stellar oscillations appear all across the Hertzsprung–Russell diagram. Recent theoretical studies support their existence also in the atmosphere of M dwarfs. These studies predict for them short periodicities ranging from 20 min to 3 h. Our Cool Tiny Beats (CTB) programme aims at finding these oscillations for the very first time. With this goal, CTB explores the short time domain of M dwarfs using radial velocity data from the High Accuracy Radial velocity Planet Searcher (HARPS)-European Southern Observatory and HARPS-N high-precision spectrographs. Here we present the results for the two most long-term stable targets observed to date with CTB, GJ 588 and GJ 699 (i.e. Barnard's star). In the first part of this work we detail the correction of several instrumental effects. These corrections are especially relevant when searching for subnight signals. Results show no significant signals in the range where M dwarfs pulsations were predicted. However, we estimate that stellar pulsations with amplitudes larger than ∼0.5 m s−1 can be detected with a 90 per cent completeness with our observations. This result, along with the excess of power regions detected in the periodograms, opens the possibility of non-resolved very low amplitude pulsation signals. Next generation more precise instrumentation would be required to detect such oscillations. However, the possibility of detecting pulsating M-dwarf stars with larger amplitudes is feasible due to the short size of the analysed sample. This motivates the need for completeness of the CTB survey

    Energy Efficiency Measures for an Electrical Material Industry

    Full text link
    The main goal of the present paper is to present the study of energy efficiency measures for an electrical material industry. The high-energy consumption of this kind of industry lead companies to search for solutions that allow increasing the energy efficiency in their installations and in the processes, promoting the reduction of the energy consumption and costs. In this context, the objectives of this study emerged, which resulted from the main needs identified by the company. Therefore, the work was divided into four parts. The first one, was the study of replacing the existing lighting (mainly mercury vapor lamps by led); another study conducted was the replacement of the electric motors in injection machines by new and more efficient ones; the third one was the installation of a photovoltaic solar system (for self-consumption) and, finally, the project of a new power converter station for the company. The energy efficiency studies carried out are based on: a careful analysis of the data provided by the company; all the measurements done; the consumption profiles that have been drawn; an extensive market research (with the purpose of finding the most efficient solutions for each case); and in already existing and proven calculation methodologies, leading, in this way, to a greater reliability of the obtained results. These studies showed to which extent the implementation of the various measures presented are economically viable, their impact on the reduction of energy consumption and the annual savings achieved.This work was supported by Coimbra Institute of Engineering – Polytechnic Institute of Coimbra and by projects: UID/MULTI/00308/2019 (supported by the Portuguese ‘Fundação para a Ciência e a Tecnologia’: FCT – Foundation for Science and Technology) and by the European Regional Development Fund through the COMPETE 2020 Programme, FCT Portuguese Foundation for Science and Technology within project T4ENERTEC (POCI-01- 0145-FEDER-029820)

    On the variability of HD 170699 - a possible COROT target

    Get PDF
    We present the analysis of the variability of HD 170699, a COROT star showing the characteristics of a non evolutionary Delta Scuti star with high rotational velocity. There is a clear period of 10.45 c/d with 5.29 mmag amplitude in the y filter. From the data, it can be seen that the star shows multi-periodicity and it is necessary to add more frequencies to adjust the observationsComment: To appear in RevMexAA(SC) in Proceedings of XII Reunion Regional Latinoamericana de la UAI held in Isla Margarita, Venezuela, October 22-26, 200
    corecore