24 research outputs found

    Peripheral inflammation is associated with brain atrophy and cognitive decline linked to mild cognitive impairment and Alzheimer’s disease

    Get PDF
    Inflammation is an important factor in Alzheimer's disease (AD). An NMR measurement in plasma, glycoprotein acetyls (GlycA), captures the overall level of protein production and glycosylation implicated in systemic inflammation. With its additional advantage of reducing biological variability, GlycA might be useful in monitoring the relationship between peripheral inflammation and brain changes relevant to AD. However, the associations between GlycA and these brain changes have not been fully evaluated. Here, we performed Spearman's correlation analyses to evaluate these associations cross-sectionally and determined whether GlycA can inform AD-relevant longitudinal measurements among participants in the Alzheimer's Disease Neuroimaging Initiative (n = 1506), with additional linear models and stratification analyses to evaluate the influences of sex or diagnosis status and confirm findings from Spearman's correlation analyses. We found that GlycA was elevated in AD patients compared to cognitively normal participants. GlycA correlated negatively with multiple concurrent regional brain volumes in females diagnosed with late mild cognitive impairment (LMCI) or AD. Baseline GlycA level was associated with executive function decline at 3-9 year follow-up in participants diagnosed with LMCI at baseline, with similar but not identical trends observed in the future decline of memory and entorhinal cortex volume. Results here indicated that GlycA is an inflammatory biomarker relevant to AD pathogenesis and that the stage of LMCI might be relevant to inflammation-related intervention

    Pairwise Correlation Analysis of the Alzheimer’s Disease Neuroimaging Initiative (ADNI) Dataset Reveals Significant Feature Correlation

    Get PDF
    The Alzheimer’s Disease Neuroimaging Initiative (ADNI) contains extensive patient measurements (e.g., magnetic resonance imaging [MRI], biometrics, RNA expression, etc.) from Alzheimer’s disease (AD) cases and controls that have recently been used by machine learning algorithms to evaluate AD onset and progression. While using a variety of biomarkers is essential to AD research, highly correlated input features can significantly decrease machine learning model generalizability and performance. Additionally, redundant features unnecessarily increase computational time and resources necessary to train predictive models. Therefore, we used 49,288 biomarkers and 793,600 extracted MRI features to assess feature correlation within the ADNI dataset to determine the extent to which this issue might impact large scale analyses using these data. We found that 93.457% of biomarkers, 92.549% of the gene expression values, and 100% of MRI features were strongly correlated with at least one other feature in ADNI based on our Bonferroni corrected α (p-value ≤ 1.40754 × 10−13). We provide a comprehensive mapping of all ADNI biomarkers to highly correlated features within the dataset. Additionally, we show that significant correlation within the ADNI dataset should be resolved before performing bulk data analyses, and we provide recommendations to address these issues. We anticipate that these recommendations and resources will help guide researchers utilizing the ADNI dataset to increase model performance and reduce the cost and complexity of their analyses

    Bile acids targeted metabolomics and medication classification data in the ADNI1 and ADNIGO/2 cohorts

    Get PDF
    Alzheimer’s disease (AD) is the most common cause of dementia. The mechanism of disease development and progression is not well understood, but increasing evidence suggests multifactorial etiology, with a number of genetic, environmental, and aging-related factors. There is a growing body of evidence that metabolic defects may contribute to this complex disease. To interrogate the relationship between system level metabolites and disease susceptibility and progression, the AD Metabolomics Consortium (ADMC) in partnership with AD Neuroimaging Initiative (ADNI) is creating a comprehensive biochemical database for patients in the ADNI1 cohort. We used the Biocrates Bile Acids platform to evaluate the association of metabolic levels with disease risk and progression. We detail the quantitative metabolomics data generated on the baseline samples from ADNI1 and ADNIGO/2 (370 cognitively normal, 887 mild cognitive impairment, and 305 AD). Similar to our previous reports on ADNI1, we present the tools for data quality control and initial analysis. This data descriptor represents the third in a series of comprehensive metabolomics datasets from the ADMC on the ADNI

    Metabolic Network Analysis Reveals Altered Bile Acid Synthesis and Metabolism in Alzheimer\u27s Disease.

    Get PDF
    Increasing evidence suggests Alzheimer\u27s disease (AD) pathophysiology is influenced by primary and secondary bile acids, the end product of cholesterol metabolism. We analyze 2,114 post-mortem brain transcriptomes and identify genes in the alternative bile acid synthesis pathway to be expressed in the brain. A targeted metabolomic analysis of primary and secondary bile acids measured from post-mortem brain samples of 111 individuals supports these results. Our metabolic network analysis suggests that taurine transport, bile acid synthesis, and cholesterol metabolism differ in AD and cognitively normal individuals. We also identify putative transcription factors regulating metabolic genes and influencing altered metabolism in AD. Intriguingly, some bile acids measured in brain tissue cannot be explained by the presence of enzymes responsible for their synthesis, suggesting that they may originate from the gut microbiome and are transported to the brain. These findings motivate further research into bile acid metabolism in AD to elucidate their possible connection to cognitive decline

    Revealing heterogeneity of brain imaging phenotypes in Alzheimer’s disease based on unsupervised clustering of blood marker profiles

    No full text
    Alzheimer’s disease (AD) affects millions of people and is a major rising problem in health care worldwide. Recent research suggests that AD could have different subtypes, presenting differences in how the disease develops. Characterizing those subtypes could be key to deepen the understanding of this complex disease. In this paper, we used a multivariate, non-supervised clustering method over blood-based markers to find subgroups of patients defined by distinctive blood marker profiles. Our analysis on ADNI database identified 4 possible subgroups, each with a different blood profile. More importantly, we show that subgroups with different profiles have a different relationship between brain phenotypes detected in magnetic resonance imaging and disease condition.This research was partially funded by the “Fundacio´ La Marato´ de TV3” (n˚20154031). Data collection and sharing for this project was funded by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH-12-2-0012). Data collection and sharing for this project was also funded by the Alzheimer’s Disease Metabolomics Consortium (National Institute on Aging R01AG046171, RF1AG051550 and 3U01AG024904-09S4). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Quick assessment for systematic test statistic inflation/deflation due to null model misspecifications in genome-wide environment interaction studies.

    No full text
    Gene-environment (GxE) interaction is one potential explanation for the missing heritability problem. A popular approach to genome-wide environment interaction studies (GWEIS) is based on regression models involving interactions between genetic variants and environment variables. Unfortunately, GWEIS encounters systematically inflated (or deflated) test statistics more frequently than a marginal association study. The problematic behavior may occur due to poor specification of the null model (i.e. the model without genetic effect) in GWEIS. Improved null model specification may resolve the problem, but the investigation requires many time-consuming analyses of genome-wide scans, e.g. by trying out several transformations of the phenotype. It is therefore helpful if we can predict such problematic behavior beforehand. We present a simple closed-form formula to assess problematic behavior of GWEIS under the null hypothesis of no genetic effects. It requires only phenotype, environment variables, and covariates, enabling quick identification of systematic test statistic inflation or deflation. Applied to real data from the Alzheimer's Disease Neuroimaging Initiative (ADNI), our formula identified problematic studies from among hundreds GWEIS considering each metabolite as the environment variable in GxE interaction. Our formula is useful to quickly identify problematic GWEIS without requiring a genome-wide scan
    corecore