345 research outputs found

    Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world

    Get PDF
    Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic. Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality. Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States. Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis. Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection

    stairs and fire

    Get PDF

    Discutindo a educação ambiental no cotidiano escolar: desenvolvimento de projetos na escola formação inicial e continuada de professores

    Get PDF
    A presente pesquisa buscou discutir como a Educação Ambiental (EA) vem sendo trabalhada, no Ensino Fundamental e como os docentes desta escola compreendem e vem inserindo a EA no cotidiano escolar., em uma escola estadual do município de Tangará da Serra/MT, Brasil. Para tanto, realizou-se entrevistas com os professores que fazem parte de um projeto interdisciplinar de EA na escola pesquisada. Verificou-se que o projeto da escola não vem conseguindo alcançar os objetivos propostos por: desconhecimento do mesmo, pelos professores; formação deficiente dos professores, não entendimento da EA como processo de ensino-aprendizagem, falta de recursos didáticos, planejamento inadequado das atividades. A partir dessa constatação, procurou-se debater a impossibilidade de tratar do tema fora do trabalho interdisciplinar, bem como, e principalmente, a importância de um estudo mais aprofundado de EA, vinculando teoria e prática, tanto na formação docente, como em projetos escolares, a fim de fugir do tradicional vínculo “EA e ecologia, lixo e horta”.Facultad de Humanidades y Ciencias de la Educació

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    No full text
    Funder: NCI U24CA211006Abstract: The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts

    Epigenic regulation and posttranslational modification of human cytochrome P450s : Focus on CYP2W1, CYP1A2 and CYP2C18

    Get PDF
    The cytochrome P450 superfamily represents a very important group of enzymes that are responsible for the metabolism of drugs as well as of endogenous compounds. Many P450s are genetically polymorphic causing important interindividual variability in P450 expression and activity whereas in some cases the basis for interindividual variation has still not been resolved. In this thesis, epigenetic and posttranslational aspects of the regulation of P450s are discussed, with special emphasis on CYP2W1, CYP1A2 and CYP2C18. CYP2W1 was identified through search in the dbEST and Celera sequence databases and cloned. CYP2W1 is a 5.5 kb long gene located on chromosome 7p22.3, was found to be expressed in HepG2 cells, and later in Caco2TC7 cells. Transient cDNA-based expression in HEK293 cells yielded a protein that is properly folded, as evidenced by its typical P450 spectrum and was active in the catalysis of arachidonic acid metabolism. Gene analysis revealed a high density of CG dinucleotides and the presence of CpG islands in promoter and exon 1-intron 1 region. Experiments using 5-Aza-2′-deoxycytidine treatment of HepG2 and B16A2 cells suggested involvement of DNA methylation in the regulation of CYP2W1 expression. Interestingly, the CYP2W1 enzyme was found to be expressed almost entirely in fetal colon (rat) and in human colorectal cancers. In these tumors there was a reverse correlation of DNA methylation and CYP2W1 expression, which further proved the involvement of DNA methylation in CYP2W1 regulation. The colorectal cancer-specific expression of CYP2W1 offers an attractive means of developing an anticancer chemotherapeutic strategy by prodrug activation. We found that the enzyme is localized at the cell surface, thus raising the possibility for cancer antibody therapy. It is posttranslationally modified by N-linked glycosylation on Asn177, which is the first time glycosylation is described for P450s in families 1-3. The functional role of glycosylation in CYP2W1 is yet to be determined. Although the extensive variability in CYP1A2 expression and activity is well documented, the main genetic basis for this is poorly understood. We studied DNA methylation in the CYP1A2 gene in relation to interindividual differences in hepatic expression as revealed from a human liver bank. The DNA methylation level of the CpG island was shown to be inversely correlated with the CYP1A2 mRNA levels. When evaluated against allele-specific expression, however, no correlation was found with DNA methylation. Interestingly, site-specific changes in DNA methylation correlated with allele-specific expression, suggesting the possible role of transcription regulators that bind to specific sites and are influenced by methylation changes. In addition, evidence is provided for the microRNA silencing of CYP2C18 explaining its lack of expression at the protein level. In conclusion a new colorectal cancer specific form of P450 (CYP2W1) has been cloned and characterized and suggested to constitute a possible drug target. Epigenetic mechanisms that control certain P450 expression have been identified and could potentially provide additional understanding to the important interindividual differences in expression of these pharmacologically and physiologically important genes

    Microcontroller-based automatic control and telemetry system for the Gacab, Abra micro-hydroelectric power plant

    No full text
    The installation and development of Micro-Hydroelectric power plants has paved way for the improvement of the lives of the people who live in remote areas. Micro-hydroelectric power plants not only provide electricity to the townspeople but also, it provides other livelihood projects. Although these power plants prove to be beneficial, the painstaking task of manually monitoring and adjusting the valves to produce and maintain a constant voltage level arises. Through technology, the automation of the plant\u27s control mechanism and remote monitoring of parameters are possible. The automatic control mechanism of the plant through Fuzzy Logic adjusts the guide vane of the plant depending on the load to maintain a voltage level within 218-222V. Furthermore, voltage and current levels are measured and acquired through a data acquisition module, which is then linked to a GSM module through a ZILOG Z8F6423 Microcontroller. The GSM module sends the gathered data via SMS to a receiving cellular phone, Nokia 7110. A GUI is made by using Visual C++ to display the data from the cellular phone, and allows the user to request data from the on-site power plant

    Experimental and computational evalutation of flow characteristics for advanced film cooling hole geometries

    No full text
    Film cooling is crucial in the field of gas turbines to protect the blade surfaces from the hot combustion gases. Several hole geometries have been studied in the past in an effort to optimize the cooling effectiveness of the holes while maintaining the structural integrity of the blade and low manufacturing costs. To understand the cooling effectiveness of the various hole geometries, the flow structures that develop as the coolant jet interacts with the hot mainstream must be understood. The present paper compares the results obtained from 2D Particle Image Velocimetry (PIV) measurements with CFD predictions using standard Reynolds-Averaged Navier Stokes (RANS) models with a commercially available code. The study is conducted for flat plate film cooling via conventional cylindrical holes, shaped holes (10° flare/laidback), and a tripod anti-vortex hole (AV) design. A constant blowing ratio (BR) of 0.5 was used for all the experiments, except for an additional measurement for the AV design at a BR of 1.0. Computational fluid dynamic (CFD) calculations were made with a standard k-epsilon model and compared to PIV results. The results show the counter-rotating vortices developing for cylindrical and shaped holes up to 5D and 3D respectively from the hole exit. AV holes showed no vortex formation, further supporting its higher cooling performance. Moreover, the present results indicate no separation of the coolant jet for AV or shaped holes as expected, while cylindrical holes displayed a small separation with a vertical extent of ∼0.1D. The CFD model was able to capture the main structures of the flow, but further efforts will concentrate in improving the representation of the flow normal to the flat plate surface

    Stable C0T-1 repeat RNA is abundant and is associated with euchromatic interphase chromosomes

    Get PDF
    Recent studies recognize a vast diversity of noncoding RNAs with largely unknown functions, but few have examined interspersed repeat sequences, which constitute almost half our genome. RNA hybridization in situ using C0T-1 (highly repeated) DNA probes detects surprisingly abundant euchromatin-associated RNA comprised predominantly of repeat sequences (C0T-1 RNA), including LINE-1. C0T-1-hybridizing RNA strictly localizes to the interphase chromosome territory in cis and remains stably associated with the chromosome territory following prolonged transcriptional inhibition. The C0T-1 RNA territory resists mechanical disruption and fractionates with the nonchromatin scaffold but can be experimentally released. Loss of repeat-rich, stable nuclear RNAs from euchromatin corresponds to aberrant chromatin distribution and condensation. C0T-1 RNA has several properties similar to XIST chromosomal RNA but is excluded from chromatin condensed by XIST. These findings impact two black boxes of genome science: the poorly understood diversity of noncoding RNA and the unexplained abundance of repetitive elements

    Intein-Promoted Cyclization of Aspartic Acid Flanking the Intein Leads to Atypical N‑Terminal Cleavage

    No full text
    Protein splicing is a post-translational reaction facilitated by an intein, or intervening protein, which involves the removal of the intein and the ligation of the flanking polypeptides, or exteins. A DNA polymerase II intein from <i>Pyrococcus abyssi</i> (<i>Pab</i> PolII intein) can promote protein splicing <i>in vitro</i> on incubation at high temperature. Mutation of active site residues Cys1, Gln185, and Cys+1 to Ala results in an inactive intein precursor, which cannot promote the steps of splicing, including cleavage of the peptide bond linking the N-extein and intein (N-terminal cleavage). Surprisingly, coupling the inactivating mutations to a change of the residue at the C-terminus of the N-extein (N-1 residue) from the native Asn to Asp reactivates N-terminal cleavage at pH 5. Similar “aspartic acid effects” have been observed in other proteins and peptides but usually only occur at lower pH values. In this case, however, the unusual N-terminal cleavage is abolished by mutations to catalytic active site residues and unfolding of the intein, indicating that this cleavage effect is mediated by the intein active site and the intein fold. We show via mass spectrometry that the reaction proceeds through cyclization of Asp resulting in anhydride formation coupled to peptide bond cleavage. Our results add to the richness of the understanding of the mechanism of protein splicing and provide insight into the stability of proteins at moderately low pH. The results also explain, and may help practitioners avoid, a side reaction that may complicate intein applications in biotechnology
    corecore