565 research outputs found

    Entanglement detachment in fermionic systems

    Full text link
    This article introduces and discusses the concept of entanglement detachment. Under some circumstances, enlarging a few couplings of a Hamiltonian can effectively detach a (possibly disjoint) block within the ground state. This detachment is characterized by a sharp decrease in the entanglement entropy between block and environment, and leads to an increase of the internal correlations between the (possibly distant) sites of the block. We provide some examples of this detachment in free fermionic systems. The first example is an edge-dimerized chain, where the second and penultimate hoppings are increased. In that case, the two extreme sites constitute a block which disentangles from the rest of the chain. Further examples are given by (a) a superlattice which can be detached from a 1D chain, and (b) a star-graph, where the extreme sites can be detached or not depending on the presence of an external magnetic field, in analogy with the Aharonov-Bohm effect. We characterize these detached blocks by their reduced matrices, specially through their entanglement spectrum and entanglement Hamiltonian

    Exchange of ejecta between Telesto and Calypso: Tadpoles, horseshoes, and passing orbits

    Full text link
    We have numerically integrated the orbits of ejecta from Telesto and Calypso, the two small Trojan companions of Saturn's major satellite Tethys. Ejecta were launched with speeds comparable to or exceeding their parent's escape velocity, consistent with impacts into regolith surfaces. We find that the fates of ejecta fall into several distinct categories, depending on both the speed and direction of launch. The slowest ejecta follow sub-orbital trajectories and re-impact their source moon in less than one day. Slightly faster debris barely escape their parent's Hill sphere and are confined to tadpole orbits, librating about Tethys' triangular Lagrange points L4 (leading, near Telesto) or L5 (trailing, near Calypso) with nearly the same orbital semi-major axis as Tethys, Telesto, and Calypso. These ejecta too eventually re-impact their source moon, but with a median lifetime of a few dozen years. Those which re-impact within the first ten years or so have lifetimes near integer multiples of 348.6 days (half the tadpole period). Still faster debris with azimuthal velocity components >~ 10 m/s enter horseshoe orbits which enclose both L4 and L5 as well as L3, but which avoid Tethys and its Hill sphere. These ejecta impact either Telesto or Calypso at comparable rates, with median lifetimes of several thousand years. However, they cannot reach Tethys itself; only the fastest ejecta, with azimuthal velocities >~ 40 m/s, achieve "passing orbits" which are able to encounter Tethys. Tethys accretes most of these ejecta within several years, but some 1 % of them are scattered either inward to hit Enceladus or outward to strike Dione, over timescales on the order of a few hundred years

    Developing an Open-Source, Low-Cost, Radon Monitoring System

    Get PDF
    [Abstract] The United States Environmental Protection Agency (USEPA) and the International Agency for Research on Cancer (IARC) have declared Radon gas a human carcinogen. Spain has several regions with high radon concentrations, Galicia (northwestern Spain) being one with the highest Radon concentration. In this work, we present the development of an open-source and low-cost radon monitoring and alert system. The system has two parts: devices and the backend. The devices integrate a Radon sensor, capable of measuring Radon levels every 10 min, and several environmental sensors capable of measuring temperature, humidity, atmospheric pressure, and air pollution. The devices send all the information to the backend, which stores it, exposes it in a web interface, and uses the historical data to predict the radon levels for the following hours. If the radon levels are predicted to overpass the threshold in the next hour, the system issues an alert via several channels (email and MQTT) to the configured recipients for the corresponding device, allowing them to take measures to lower the Radon concentration. The results of this work indicate that the system allows the radon levels to be greatly reduced and makes the development of a low cost and open-source radon monitoring system feasible. The system scalability allows a network of sensors to be created that can help mitigate the health hazard that high radon concentrations create

    Coupled h-m fracture interaction using fem with zero-thickness interface elements

    Get PDF
    Intensive hydraulic fracturing is a procedure employed for low permeability reservoir stimulation. This technique consists of generating a sequence of regularly spaced parallel fractures (multi-stage fracturing). The generation of a fracture involves the modification of the local stress state, and therefore, in the case of multi-stage fracturing, the propagation of a certain fracture can be affected by the injection sequence, as it has been observed with microseismicity monitoring [1]. This paper describes a study of this technique by means of the Finite Element Method with zero-thickness interface elements for the geo-mechanical modelling of discontinuities [2]. The technique consists in inserting interface elements in between standard elements to allow jumps in the displacement solution fields. For the mechanical problem, their kinematic constitutive variables are relative displacements, and the corresponding static variables are stress tractions. The relationship between variables is controlled via a fracture-based constitutive law with elasto-plastic structure [3]. Concerning the hydraulic problem, the interface formulation includes both the longitudinal flow (with a longitudinal conductivity parameter strongly dependent on the fracture aperture), as well as and the transversal flow across the element [4]. Previous work by the authors focused on the validation of the method, the analysis a single fracture plane problem [5, 6]. In this case the method is extended to allow free propagation of fractures in any direction, by means of inserting interface elements between all continuum elements. The results presented in this paper analyse the effect of material properties, in particular fracture characterization, in the propagation and the effect of different major to minor principal horizontal stress ratio, on the trajectory and interaction of the fractures

    Orbital stability of distant satellites of jovian planets

    Get PDF

    Effect of Ghrelin on Glucose-Insulin Homeostasis: Therapeutic Implications

    Get PDF
    Ghrelin is a 28-amino-acid peptide that displays a strong growth hormone- (GH-) releasing activity through the activation of the growth hormone secretagogue receptor (GHSR). The first studies about role of ghrelin were focused on its orexigenic ability, but despite indisputable pharmacological data, the evidence for a physiological role for ghrelin in the control of appetite is much less clear. Mice with targeted deletion of either ghrelin or the GHSR exhibit an essentially normal metabolic phenotype when fed a regular chow diet, suggesting that ghrelin may have a redundant role in the regulation of food intake. RNAs for ghrelin as well as GHSR are expressed in the pancreas of rats and humans and several studies propose that ghrelin could have an important function in glucose homeostasis and insulin release, independent of GH secretion. Low plasma ghrelin levels are associated with elevated fasting insulin levels and insulin resistance, suggesting both physiological and pathophysiological roles for ghrelin. For this reason, at least theoretically, ghrelin and/or its signalling manipulation could be useful for the treatment or prevention of diseases of glucose homeostasis such as type 2 diabetes
    corecore