206 research outputs found

    Casimir Invariants from Quasi-Hopf (Super)algebras

    Get PDF
    We show how to construct, starting from a quasi-Hopf (super)algebra, central elements or Casimir invariants. We show that these central elements are invariant under quasi-Hopf twistings. As a consequence, the elliptic quantum (super)groups, which arise from twisting the normal quantum (super)groups, have the same Casimir invariants as the corresponding quantum (super)groups.Comment: 24 pages, Latex fil

    Influence of major mergers on the radio emission of elliptical galaxies

    Full text link
    We investigate the influence of major mergers on the radio emission of elliptical galaxies. We use a complete sample of close pairs, which contains 475 merging and 1828 non-merging paired elliptical galaxies of M_r<-21.5 selected from the Sloan Digital Sky Survey. In addition, a control sample of 2000 isolated field galaxies is used for comparison. We cross-identify the optical galaxies with the radio surveys of FIRST and NVSS. We find that the radio fraction of merging paired galaxies is about 6%, which is slightly higher than the 5% obtained for non-merging paired galaxies, although these values are consistent with each other owing to the large uncertainty caused by the limited sample. The radio fraction is twice as that of isolated galaxies, which is less than 3%. Radio emission of elliptical galaxies is only slightly affected by major mergers, but predominantly depends on their optical luminosities. Therefore, merging is not important in triggering the radio emission of elliptical galaxies.Comment: 5 pages, 5 figures, 1 table, accepted for publication in A&A, minor change

    Turing instabilities in a mathematical model for signaling networks

    Full text link
    GTPase molecules are important regulators in cells that continuously run through an activation/deactivation and membrane-attachment/membrane-detachment cycle. Activated GTPase is able to localize in parts of the membranes and to induce cell polarity. As feedback loops contribute to the GTPase cycle and as the coupling between membrane-bound and cytoplasmic processes introduces different diffusion coefficients a Turing mechanism is a natural candidate for this symmetry breaking. We formulate a mathematical model that couples a reaction-diffusion system in the inner volume to a reaction-diffusion system on the membrane via a flux condition and an attachment/detachment law at the membrane. We present a reduction to a simpler non-local reaction-diffusion model and perform a stability analysis and numerical simulations for this reduction. Our model in principle does support Turing instabilities but only if the lateral diffusion of inactivated GTPase is much faster than the diffusion of activated GTPase.Comment: 23 pages, 5 figures; The final publication is available at http://www.springerlink.com http://dx.doi.org/10.1007/s00285-011-0495-

    3D Coronal Density Reconstruction and Retrieving the Magnetic Field Structure during Solar Minimum

    Full text link
    Measurement of the coronal magnetic field is a crucial ingredient in understanding the nature of solar coronal phenomena at all scales. We employed STEREO/COR1 data obtained during a deep minimum of solar activity in February 2008 (Carrington rotation CR 2066) to retrieve and analyze the three-dimensional (3D) coronal electron density in the range of heights from 1.5 to 4 Rsun using a tomography method. With this, we qualitatively deduced structures of the coronal magnetic field. The 3D electron density analysis is complemented by the 3D STEREO/EUVI emissivity in the 195 A band obtained by tomography for the same CR. A global 3D MHD model of the solar corona was used to relate the reconstructed 3D density and emissivity to open/closed magnetic field structures. We show that the density maximum locations can serve as an indicator of current sheet position, while the locations of the density gradient maximum can be a reliable indicator of coronal hole boundaries. We find that the magnetic field configuration during CR 2066 has a tendency to become radially open at heliocentric distances greater than 2.5 Rsun. We also find that the potential field model with a fixed source surface (PFSS) is inconsistent with the boundaries between the regions with open and closed magnetic field structures. This indicates that the assumption of the potential nature of the coronal global magnetic field is not satisfied even during the deep solar minimum. Results of our 3D density reconstruction will help to constrain solar coronal field models and test the accuracy of the magnetic field approximations for coronal modeling.Comment: Published in "Solar Physics

    On the dynamical generation of the Maxwell term and scale invariance

    Full text link
    Gauge theories with no Maxwell term are investigated in various setups. The dynamical generation of the Maxwell term is correlated to the scale invariance properties of the system. This is discussed mainly in the cases where the gauge coupling carries dimensions. The term is generated when the theory contains a scale explicitly, when it is asymptotically free and in particular also when the scale invariance is spontaneously broken. The terms are not generated when the scale invariance is maintained. Examples studied include the large NN limit of the CPN1CP^{N-1} model in (2+ϵ)(2+\epsilon) dimensions, a 3D gauged ϕ6\phi^6 vector model and its supersymmetric extension. In the latter case the generation of the Maxwell term at a fixed point is explored. The phase structure of the d=3d=3 case is investigated in the presence of a Chern-Simons term as well. In the supersymmetric ϕ6\phi^6 model the emergence of the Maxwell term is accompanied by the dynamical generation of the Chern-Simons term and its multiplet and dynamical breaking of the parity symmetry. In some of the phases long range forces emerge which may result in logarithmic confinement. These include a dilaton exchange which plays a role also in the case when the theory has no gauge symmetry. Gauged Lagrangian realizations of the 2D coset models do not lead to emergent Maxwell terms. We discuss a case where the gauge symmetry is anomalous.Comment: 38 pages, 4 figures; v2 slightly improved, typos fixed, references added, published versio

    Microvariability in the optical polarization of 3C279

    Get PDF
    We present results of a microvariability polarization study in the violently variable quasar 3C279. We have resolved the polarization curves in the V band for this object down to timescales of minutes. We found two main components in the evolution of the degree of linear polarization, one consisting of a flicker with timescales of several tens of minutes and other component with far more significant variations on timescales of a few days. The linear polarization descended from 17\sim 17 % down to 8\sim 8 % in three nights. The polarization angle underwent a sudden change of more that 10 degrees in a few hours, perhaps indicating the injection of a new shock in the jet. The amplitude of the intranight flickering in the degree of polarization is at the level of 1\sim 1%. These are probably the best sampled polarization data ever obtained for this object. We also performed IR observations and we provide a follow-up of the evolution of this source at such energies after the main polarization outburst.Comment: 10 pages, 9 figures, accepted for publication in A&

    Radio-Excess IRAS Galaxies: PMN/FSC Sample Selection

    Full text link
    A sample of 178 extragalactic objects is defined by correlating the 60 micron IRAS FSC with the 5 GHz PMN catalog. Of these, 98 objects lie above the radio/far-infrared relation for radio-quiet objects. These radio-excess galaxies and quasars have a uniform distribution of radio excesses and appear to be a new population of active galaxies not present in previous radio/far-infrared samples. The radio-excess objects extend over the full range of far-infrared luminosities seen in extragalactic objects. Objects with small radio excesses are more likely to have far-infrared colors similar to starbursts, while objects with large radio excesses have far-infrared colors typical of pure AGN. Some of the most far-infrared luminous radio-excess objects have the highest far-infrared optical depths. These are good candidates to search for hidden broad line regions in polarized light or via near-infrared spectroscopy. Some low far-infrared luminosity radio-excess objects appear to derive a dominant fraction of their far-infrared emission from star formation, despite the dominance of the AGN at radio wavelengths. Many of the radio-excess objects have sizes likely to be smaller than the optical host, but show optically thin radio emission. We draw parallels between these objects and high radio luminosity Compact Steep-Spectrum (CSS) and GigaHertz Peaked-Spectrum (GPS) objects. Radio sources with these characteristics may be young AGN in which the radio activity has begun only recently. Alternatively, high central densities in the host galaxies may be confining the radio sources to compact sizes. We discuss future observations required to distinguish between these possibilities and determine the nature of radio-excess objects.Comment: Submitted to AJ. 44 pages, 11 figures. A version of the paper with higher quality figures is available from http://www.mso.anu.edu.au/~cdrake/PMNFSC/paperI

    Can long-term periodic variability and jet helicity in 3C 120 be explained by jet precession?

    Full text link
    Optical variability of 3C 120 is discussed in the framework of jet precession. Specifically, we assume that the observed long-term periodic variability is produced by the emission from an underlying jet with a time-dependent boosting factor driven by precession. The differences in the apparent velocities of the different superluminal components in the milliarcsecond jet can also be explained by the precession model as being related to changes in the viewing angle. The evolution of the jet components has been used to determine the parameters of the precession model, which also reproduce the helical structure seen at large scales. Among the possible mechanisms that could produce jet precession, we consider that 3C 120 harbours a super-massive black hole binary system in its nuclear region and that torques induced by misalignment between the accretion disc and the orbital plane of the secondary black hole are responsible for this precession; we estimated upper and lower limits for the black holes masses and their mean separation.Comment: 10 pages, 4 figures, accepted for publication in MNRA

    Signatures of the slow solar wind streams from active regions in the inner corona

    Full text link
    Some of local sources of the slow solar wind can be associated with spectroscopically detected plasma outflows at edges of active regions accompanied with specific signatures in the inner corona. The EUV telescopes (e.g. SPIRIT/CORONAS-F, TESIS/CORONAS-Photon and SWAP/PROBA2) sometimes observed extended ray-like structures seen at the limb above active regions in 1MK iron emission lines and described as "coronal rays". To verify the relationship between coronal rays and plasma outflows, we analyze an isolated active region (AR) adjacent to small coronal hole (CH) observed by different EUV instruments in the end of July - beginning of August 2009. On August 1 EIS revealed in the AR two compact outflows with the Doppler velocities V =10-30 km/s accompanied with fan loops diverging from their regions. At the limb the ARCH interface region produced coronal rays observed by EUVI/STEREO-A on July 31 as well as by TESIS on August 7. The rays were co-aligned with open magnetic field lines expanded to the streamer stalks. Using the DEM analysis, it was found that the fan loops diverged from the outflow regions had the dominant temperature of ~1 MK, which is similar to that of the outgoing plasma streams. Parameters of the solar wind measured by STEREO-B, ACE, WIND, STEREO-A were conformed with identification of the ARCH as a source region at the Wang-Sheeley-Arge map of derived coronal holes for CR 2086. The results of the study support the suggestion that coronal rays can represent signatures of outflows from ARs propagating in the inner corona along open field lines into the heliosphere.Comment: Accepted for publication in Solar Physics; 31 Pages; 13 Figure

    Radio Frequency Spectra of 388 Bright 74 MHz Sources

    Full text link
    As a service to the community, we have compiled radio frequency spectra from the literature for all sources within the VLA Low Frequency Sky Survey (VLSS) that are brighter than 15 Jy at 74 MHz. Over 160 references were used to maximize the amount of spectral data used in the compilation of the spectra, while also taking care to determine the corrections needed to put the flux densities from all reference on the same absolute flux density scale. With the new VLSS data, we are able to vastly improve upon previous efforts to compile spectra of bright radio sources to frequencies below 100 MHz because (1) the VLSS flux densities are more reliable than those from some previous low frequency surveys and (2) the VLSS covers a much larger area of the sky (declination >-30 deg.) than many other low frequency surveys (e.g., the 8C survey). In this paper, we discuss how the spectra were constructed and how parameters quantifying the shapes of the spectra were derived. Both the spectra and the shape parameters are made available here to assist in the calibration of observations made with current and future low frequency radio facilities.Comment: Accepted to ApJ
    corecore