38 research outputs found

    Degradation of Aflatoxin B1 by a Sustainable Enzymatic Extract from Spent Mushroom Substrate of Pleurotus eryngii

    Get PDF
    Ligninolytic enzymes from white-rot fungi, such as laccase (Lac) and Mn-peroxidase (MnP), are able to degrade aflatoxin B1 (AFB1), the most harmful among the known mycotoxins. The high cost of purification of these enzymes has limited their implementation into practical technologies. Every year, tons of spent mushroom substrate (SMS) are produced as a by-product of edible mushroom cultivation, such as Pleurotus spp., and disposed at a cost for farmers. SMS may still bea source of ligninolytic enzymes useful for AFB1 degradation. The in vitro AFB1-degradative activity of an SMS crude extract (SMSE) was investigated. Results show that: (1) in SMSE, high Lac activity (4 U g−1 dry matter) and low MnP activity (0.4 U g−1 dry matter) were present; (2) after 1 d of incubation at 25 °C, the SMSE was able to degrade more than 50% of AFB1, whereas after 3 and 7 d of incubation, the percentage of degradation reached the values of 75% and 90%, respectively; (3) with increasing pH values, the degradation percentage increased, reaching 90% after 3 d at pH 8. Based on these results, SMS proved to be a suitable source of AFB1 degrading enzymes and the use of SMSE to detoxify AFB1 contaminated commodities appears conceivable

    N-Acetylcysteine as an antioxidant and disulphide breaking agent : the reasons why

    Get PDF
    The main molecular mechanisms explaining the well-established antioxidant and reducing activity of N-acetylcysteine (NAC), the N-acetyl derivative of the natural amino acid l-cysteine, are summarised and critically reviewed. The antioxidant effect is due to the ability of NAC to act as a reduced glutathione (GSH) precursor; GSH is a well-known direct antioxidant and a substrate of several antioxidant enzymes. Moreover, in some conditions where a significant depletion of endogenous Cys and GSH occurs, NAC can act as a direct antioxidant for some oxidant species such as NO2 and HOX. The antioxidant activity of NAC could also be due to its effect in breaking thiolated proteins, thus releasing free thiols as well as reduced proteins, which in some cases, such as for mercaptoalbumin, have important direct antioxidant activity. As well as being involved in the antioxidant mechanism, the disulphide breaking activity of NAC also explains its mucolytic activity which is due to its effect in reducing heavily cross-linked mucus glycoproteins. Chemical features explaining the efficient disulphide breaking activity of NAC are also explained

    Mobilization of healthy donors with plerixafor affects the cellular composition of T-cell receptor (TCR)-αβ/CD19-depleted haploidentical stem cell grafts

    Get PDF
    Background: HLA-haploidentical hematopoietic stem cell transplantation (HSCT) is suitable for patients lacking related or unrelated HLA-matched donors. Herein, we investigated whether plerixafor (MZ), as an adjunct to G-CSF, facilitated the collection of mega-doses of hematopoietic stem cells (HSC) for TCR-αβ/CD19-depleted haploidentical HSCT, and how this agent affects the cellular graft composition. Methods: Ninety healthy donors were evaluated. Single-dose MZ was given to 30 ‘poor mobilizers’ (PM) failing to attain ≥40 CD34+ HSCs/μL after 4 daily G-CSF doses and/or with predicted apheresis yields ≤12.0x106 CD34+ cells/kg recipient’s body weight. Results: MZ significantly increased CD34+ counts in PM. Naïve/memory T and B cells, as well as natural killer (NK) cells, myeloid/plasmacytoid dendritic cells (DCs), were unchanged compared with baseline. MZ did not further promote the G-CSF-induced mobilization of CD16+ monocytes and the down-regulation of IFN-γ production by T cells. HSC grafts harvested after G-CSF + MZ were enriched in myeloid and plasmacytoid DCs, but contained low numbers of pro-inflammatory 6-sulfo-LacNAc+ (Slan)-DCs. Finally, children transplanted with G-CSF + MZ-mobilized grafts received greater numbers of monocytes, myeloid and plasmacytoid DCs, but lower numbers of NK cells, NK-like T cells and Slan-DCs. Conclusions: MZ facilitates the collection of mega-doses of CD34+ HSCs for haploidentical HSCT, while affecting graft composition

    5,6-Dimethyl-1,10-phenanthroline

    No full text

    (2,2′-Bipyridyl-κ 2

    No full text

    Palmitic Acid Affects Intestinal Epithelial Barrier Integrity and Permeability In Vitro

    No full text
    Palmitic acid (PA), a long-chain saturated fatty acid, might activate innate immune cells. PA plays a role in chronic liver disease, diabetes and Crohn’s disease, all of which are associated with impaired intestinal permeability. We investigated the effect of PA, at physiological postprandial intestinal concentrations, on gut epithelium as compared to lipopolysaccharide (LPS) and ethanol, using an in vitro gut model, the human intestinal epithelial cell line Caco-2 grown on transwell inserts. Cytotoxicity and oxidative stress were evaluated; epithelial barrier integrity was investigated by measuring the paracellular flux of fluorescein, and through RT-qPCR and immunofluorescence of tight junction (TJ) and adherens junction (AJ) mRNAs and proteins, respectively. In PA-exposed Caco-2 monolayers, cytotoxicity and oxidative stress were not detected. A significant increase in fluorescein flux was observed in PA-treated monolayers, after 90 min and up to 360 min, whereas with LPS and ethanol, this was only observed at later time-points. Gene expression and immunofluorescence analysis showed TJ and AJ alterations only in PA-exposed monolayers. In conclusion, PA affected intestinal permeability without inducing cytotoxicity or oxidative stress. This effect seemed to be faster and stronger than those with LPS and ethanol. Thus, we hypothesized that PA, besides having an immunomodulatory effect, might play a role in inflammatory and functional intestinal disorders in which the intestinal permeability is altered

    Cyclosporine in psoriasis: comparison of a 25-year real-world Italian experience to current European guidelines

    No full text
    Cyclosporine (CsA) is an effective and safe therapeutic option in various dermatoses in both adults and children. Over the last 25 years, Italian dermatologists have gained relevant experience about the use of CsA in the treatment of psoriasis and atopic dermatitis, and an Italian Consensus Conference has recently provided recommendations in adult patients. A comparison between these real-world indications and current European guidelines is hereby provided
    corecore