12 research outputs found

    Feasibility of free breathing Lung MRI for Radiotherapy using non-Cartesian k-space acquisition schemes

    Get PDF
    Objective: To test a free-breathing MRI protocol for anatomical and functional assessment during lung cancer radiotherapy by assessing two non-Cartesian acquisition schemes based on T1 weighted 3D gradient recall echo sequence: (i) stack-of stars (StarVIBE) and (ii) spiral (SpiralVIBE) trajectories. Methods: MR images on five healthy volunteers were acquired on a wide bore 3T scanner (MAGNETOM Skyra, Siemens Healthcare, Erlangen, Germany). Anatomical image quality was assessed on: (1) free breathing (StarVIBE), (2) the standard clinical sequence (volumetric interpolated breath-hold examination, VIBE) acquired in a 20 second (s) compliant breath-hold and (3) 20 s non-compliant breath-hold. For functional assessment, StarVIBE and the current standard breath-hold time-resolved angiography with stochastic trajectories (TWIST) sequence were run as multiphase acquisitions to replicate dynamic contrast enhancement (DCE) in one healthy volunteer. The potential application of the SpiralVIBE sequence for lung parenchymal imaging was assessed on one healthy volunteer. Ten patients with lung cancer were subsequently imaged with the StarVIBE and SpiralVIBE sequences for anatomical and structural assessment. For functional assessment, free-breathing StarVIBE DCE protocol was compared with breath-hold TWIST sequences on four prior lung cancer patients with similar tumour locations. Image quality was evaluated independently and blinded to sequence information by an experienced thoracic radiologist. Results: For anatomical assessment, the compliant breath-hold VIBE sequence was better than free-breathing StarVIBE. However, in the presence of a non-compliant breath-hold, StarVIBE was superior. For functional assessment, StarVIBE outperformed the standard sequence and was shown to provide robust DCE data in the presence of motion. The ultrashort echo of the SpiralVIBE sequence enabled visualisation of lung parenchyma. Conclusion: The two non-Cartesian acquisition sequences, StarVIBE and SpiralVIBE, provide a free-breathing imaging protocol of the lung with sufficient image quality to permit anatomical, structural and functional assessment during radiotherapy. Advances in knowledge: Novel application of non-Cartesian MRI sequences for lung cancer imaging for radiotherapy. Illustration of SpiralVIBE UTE sequence as a promising sequence for lung structural imaging during lung radiotherapy

    Comparison of diffusion-weighted imaging in the human brain using readout-segmented EPI and PROPELLER turbo spin echo with single-shot EPI at 7 T MRI

    No full text
    Objectives: The purpose of the present study was to compare periodically rotated overlapping parallel lines with enhanced reconstruction–type turbo spin echo diffusion-weighted imaging (pTSE-DWI) and readout-segmented echo planar imaging (rsEPI-DWI) with single-shot echo planar imaging (ssEPI-DWI) in a 7 T human MR system. We evaluated the signal-to-noise ratio (SNR), image distortion, and apparent diffusion coefficient values in the human brain. Materials and Methods: Six healthy volunteers were included in this study. The study protocol was approved by our institutional review board. All measurements were performed at 7 T using pTSE-DWI, rsEPI-DWI, and ssEPI-DWI sequences. The spatial resolution was 1.2 × 1.2 mm2 in-plane with a 3-mm slice thickness. Signal-to-noise ratio was measured using 2 scans. Results: The ssEPI-DWI sequence showed significant image blurring, whereas pTSE-DWI and rsEPI-DWI sequences demonstrated high image quality with low geometrical distortion compared with reference T2-weighted, turbo spin echo images. Signal loss in ventral regions near the air-filled paranasal sinus/nasal cavity was found in ssEPI-DWI and rsEPI-DWI but not pTSE-DWI. The apparent diffusion coefficient values for ssEPI-DWI were 824 ± 17 × 10−6 and 749 ± 25 × 10−6 mm2/s in the gray matter and white matter, respectively; the values obtained for pTSE-DWI were 798 ± 21 × 10−6 and 865 ± 40 × 10−6 mm2/s; and the values obtained for rsEPI-DWI were 730 ± 12 × 10−6 and 722 ± 25 × 10−6 mm2/s. The pTSE-DWI images showed no additional distortion comparison to the T2-weighted images, but had a lower SNR than ssEPI-DWI and rsEPI-DWI. The rsEPI-DWI sequence provided high-quality images with minor distortion and a similar SNR to ssEPI-DWI. Conclusions: Our results suggest that the benefits of the rsEPI-DWI and pTSE-DWI sequences, in terms of SNR, image quality, and image distortion, appear to outweigh those of ssEPI-DWI. Thus, pTSE-DWI and rsEPI-DWI at 7 T have great potential use for clinical diagnoses. However, it is noteworthy that both sequences are limited by the scan time required. In addition, pTSE-DWI has limitations on the number of slices due to specific absorption rate. Overall, rsEPI-DWI is a favorable imaging sequence, taking into account the SNR and image quality at 7 T

    Comparison between 3-Scan Trace and Diagonal Body Diffusion-Weighted Imaging Acquisitions: A Phantom and Volunteer Study

    No full text
    Diagonal diffusion-weighted imaging (dDWI) uses simultaneous maximized application of 3 orthogonal gradient systems as opposed to sequential acquisition in 3 directions in conventional 3-scan trace DWI (tDWI). Several theoretical advantages of dDWI vs. tDWI include reduced artifacts and increased sharpness. We compared apparent diffusion coefficient (ADC) quantification and image quality between monopolar dDWI and tDWI in a dedicated diffusion phantom (b = 0/500/900/2000 s/mm2) and in the abdomen (b = 50/400/800 s/mm2) and pelvis (b = 50/1000/1600 s/mm2) of 2 male volunteers at 1.5 T and 3.0 T. Phantom estimated signal-to-noise ratio (eSNR) was also measured. Two independent observers assessed the image quality on a 5-point scale. In the phantom, image quality was similar between tDWI and dDWI, with equivalent ADC quantification (mean coefficient of variation [CV] between sequences: 1.4% ± 1.2% at 1.5 T and 0.7% ± 0.7% at 3.0 T). Phantom eSNR was similar for both tDWI and dDWI, except for a significantly lower eSNR for b900 of dDWI at 3.0 T (P = .006). In the volunteers, the CV values between tDWI and dDWI were higher than those in the phantom (CV range: abdominal organs, 1.3%–13.3%; pelvic organs, 0.6%–5.7%). A trend toward significant better image quality for dDWI compared with tDWI was observed for b800 (abdomen) at 3.0 T and for b1000 and b1600 (pelvis) at 1.5 T (P = .063 to .066). Our data suggest that dDWI may provide better image quality than tDWI without affecting ADC quantification, needing confirmation in a future clinical study

    Flow-compensated diffusion encoding in MRI for improved liver metastasis detection.

    No full text
    Magnetic resonance (MR) diffusion-weighted imaging (DWI) is often used to detect focal liver lesions (FLLs), though DWI image quality can be limited in the left liver lobe owing to the pulsatile motion of the nearby heart. Flow-compensated (FloCo) diffusion encoding has been shown to reduce this pulsation artifact. The purpose of this prospective study was to intra-individually compare DWI of the liver acquired with conventional monopolar and FloCo diffusion encoding for assessing metastatic FLLs in non-cirrhotic patients. Forty patients with known or suspected multiple metastatic FLLs were included and measured at 1.5 T field strength with a conventional (monopolar) and a FloCo diffusion encoding EPI sequence (single refocused; b-values, 50 and 800 s/mm2). Two board-certified radiologists analyzed the DWI images independently. They issued Likert-scale ratings (1 = worst, 5 = best) for pulsation artifact severity and counted the difference of lesions visible at b = 800 s/mmÂČ separately for small and large FLLs (i.e., 1 cm) and separately for left and right liver lobe. Differences between the two diffusion encodings were assessed with the Wilcoxon signed-rank test. Both readers found a reduction in pulsation artifact in the liver with FloCo encoding (p < 0.001 for both liver lobes). More small lesions were detected with FloCo diffusion encoding in both liver lobes (left lobe: six and seven additional lesions by readers 1 and 2, respectively; right lobe: five and seven additional lesions for readers 1 and 2, respectively). Both readers found one additional large lesion in the left liver lobe. Thus, flow-compensated diffusion encoding appears more effective than monopolar diffusion encoding for the detection of liver metastases

    Intravoxel incoherent motion diffusion-weighted MR imaging of solid pancreatic masses: reliability and usefulness for characterization

    No full text
    PurposeIVIM-DW imaging has shown potential usefulness in the study of pancreatic lesions. Controversial results are available regarding the reliability of the measurements of IVIM-derived parameters. The aim of this study was to evaluate the reliability and the diagnostic potential of IVIM-derived parameters in differentiation among focal solid pancreatic lesions and normal pancreas (NP).MethodsFifty-seven patients (34 carcinomasPDACs, 18 neuroendocrine neoplasmspanNENs, and 5 autoimmune pancreatitisAIP) and 50subjects with NP underwent 1.5-T MR imaging including IVIM-DWI. Images were analyzed by two independent readers. Apparent diffusion coefficient (ADC), slow component of diffusion (D), incoherent microcirculation (Dp), and perfusion fraction (f) were calculated. Interobserver reliability was assessed with intraclass correlation coefficient (ICC). A Kruskal-Wallis H test with Steel-Dwass post hoc test was used for comparison. The diagnostic performance of each parameter was evaluated through receiver operating characteristic (ROC) curve analysis.ResultsOverall interobserver agreement was excellent (ICC=0.860, 0.937, 0.968, and 0.983 for ADC, D, Dp, and f). D, Dp, and f significantly differed among PDACs and panNENs (p=0.002,<0.001, and<0.001), albeit without significant difference at the pairwise comparison of ROC curves (p=0.08-0.74). Perfusion fraction was higher in AIP compared with PDACs (p=0.024; AUC=0.735). Dp and f were higher in panNENs compared with AIP (p=0.029 and 0.023), without differences at ROC analysis (p=0.07).ConclusionsIVIM-derived parameters have excellent reliability and could help in differentiation among solid pancreatic lesions and NP
    corecore