157 research outputs found

    Probing three-dimensional surface force fields with atomic resolution: Measurement strategies, limitations, and artifact reduction

    Get PDF
    Noncontact atomic force microscopy (NC-AFM) is being increasingly used to measure the interaction force between an atomically sharp probe tip and surfaces of interest, as a function of the three spatial dimensions, with picometer and piconewton accuracy. Since the results of such measurements may be affected by piezo nonlinearities, thermal and electronic drift, tip asymmetries, and elastic deformation of the tip apex, these effects need to be considered during image interpretation. In this paper, we analyze their impact on the acquired data, compare different methods to record atomic-resolution surface force fields, and determine the approaches that suffer the least from the associated artifacts. The related discussion underscores the idea that since force fields recorded by using NC-AFM always reflect the properties of both the sample and the probe tip, efforts to reduce unwanted effects of the tip on recorded data are indispensable for the extraction of detailed information about the atomicscale properties of the surface. © 2012 Baykara et al

    Noncontact Atomic Force Microscopy: An Emerging Tool for Fundamental Catalysis Research

    Get PDF
    ConspectusAlthough atomic force microscopy (AFM) was rapidly adopted as a routine surface imaging apparatus after its introduction in 1986, it has not been widely used in catalysis research. The reason is that common AFM operating modes do not provide the atomic resolution required to follow catalytic processes; rather the more complex noncontact (NC) mode is needed. Thus, scanning tunneling microscopy has been the principal tool for atomic scale catalysis research. In this Account, recent developments in NC-AFM will be presented that offer significant advantages for gaining a complete atomic level view of catalysis.The main advantage of NC-AFM is that the image contrast is due to the very short-range chemical forces that are of interest in catalysis. This motivated our development of 3D-AFM, a method that yields quantitative atomic resolution images of the potential energy surfaces that govern how molecules approach, stick, diffuse, and rebound from surfaces. A variation of 3D-AFM allows the determination of forces required to push atoms and molecules on surfaces, from which diffusion barriers and variations in adsorption strength may be obtained. Pushing molecules towards each other provides access to intermolecular interaction between reaction partners. Following reaction, NC-AFM with CO-terminated tips yields textbook images of intramolecular structure that can be used to identify reaction intermediates and products.Because NC-AFM and STM contrast mechanisms are distinct, combining the two methods can produce unique insight. It is demonstrated for surface-oxidized Cu(100) that simultaneous 3D-AFM/STM yields resolution of both the Cu and O atoms. Moreover, atomic defects in the Cu sublattice lead to variations in the reactivity of the neighboring O atoms. It is shown that NC-AFM also allows a straightforward imaging of work function variations which has been used to identify defect charge states on catalytic surfaces and to map charge transfer within an individual molecule.These advances highlight the potential for NC-AFM-based methods to become the cornerstone upon which a quantitative atomic scale view of each step of a catalytic process may be gained. Realizing this potential will rely on two breakthroughs: (1) development of robust methods for tip functionalization and (2) simplification of NC-AFM instrumentation and control schemes. Quartz force sensors may offer paths forward in both cases. They allow any material with an atomic asperity to be used as a tip, opening the door to a wide range of surface functionalization chemistry. In addition, they do not suffer from the instabilities that motivated the initial adoption of complex control strategies that are still used today. © 2015 American Chemical Society

    Three-dimensional interaction force and tunneling current spectroscopy of point defects on rutile TiO2(110)

    Get PDF
    The extent to which point defects affect the local chemical reactivity and electronic properties of an oxide surface was evaluated with picometer resolution in all three spatial dimensions using simultaneous atomic force/scanning tunneling microscopy measurements performed on the (110) face of rutile TiO2. Oxygen atoms were imaged as protrusions in both data channels, corresponding to a rarely observed imaging mode for this prototypical metal oxide surface. Three-dimensional spectroscopy of interaction forces and tunneling currents was performed on individual surface and subsurface defects as a function of tip-sample distance. An interstitial defect assigned to a subsurface hydrogen atom is found to have a distinct effect on the local density of electronic states on the surface, but no detectable influence on the tip-sample interaction force. Meanwhile, spectroscopic data acquired on an oxygen vacancy highlight the role of the probe tip in chemical reactivity measurements. © 2016 AIP Publishing LLC

    Simultaneous measurement of multiple independent atomic-scale interactions using scanning probe microscopy: Data interpretation and the effect of cross-talk

    Get PDF
    In high-resolution scanning probe microscopy, it is becoming increasingly common to simultaneously record multiple channels representing different tip-sample interactions to collect complementary information about the sample surface. A popular choice involves simultaneous scanning tunneling microscopy (STM) and noncontact atomic force microscopy (NC-AFM) measurements, which are thought to reflect the chemical and electronic properties of the sample surface. With surface-oxidized Cu(100) as an example, we investigate whether atomic-scale information on chemical interactions can be reliably extracted from frequency shift maps obtained while using the tunneling current as the feedback parameter. Ab initio calculations of interaction forces between specific tip apexes and the surface are utilized to compare experiments with theoretical expectations. The examination reveals that constant-current operation may induce a noticeable influence of topography-feedback-induced cross-talk on the frequency shift data, resulting in misleading interpretations of local chemical interactions on the surface. Consequently, the need to apply methods such as 3D-AFM is emphasized when accurate conclusions about both the local charge density near the Fermi level, as provided by the STM channel, and the site-specific strength of tip-sample interactions (NC-AFM channel) are desired. We conclude by generalizing to the case where multiple atomic-scale interactions are being probed while only one of them is kept constant. © 2015 American Chemical Society

    Understanding scanning tunneling microscopy contrast mechanisms on metal oxides: A case study

    Get PDF
    A comprehensive analysis of contrast formation mechanisms in scanning tunneling microscopy (STM) experiments on a metal oxide surface is presented with the oxygen-induced (2√2×√2)R45 missing row reconstruction of the Cu(100) surface as a model system. Density functional theory and electronic transport calculations were combined to simulate the STM imaging behavior of pure and oxygen-contaminated metal tips with structurally and chemically different apexes while systematically varying bias voltage and tip-sample distance. The resulting multiparameter database of computed images was used to conduct an extensive comparison with experimental data. Excellent agreement was attained for a large number of cases, suggesting that the assumed model tips reproduce most of the commonly encountered contrast-determining effects. Specifically, we find that depending on the bias voltage polarity, copper-terminated tips allow selective imaging of two structurally distinct surface Cu sites, while oxygen-terminated tips show complex contrasts with pronounced asymmetry and tip-sample distance dependence. Considering the structural and chemical stability of the tips reveals that the copper-terminated apexes tend to react with surface oxygen at small tip-sample distances. In contrast, oxygen-terminated tips are considerably more stable, allowing exclusive surface oxygen imaging at small tip-sample distances. Our results provide a conclusive understanding of fundamental STM imaging mechanisms, thereby providing guidelines for experimentalists to achieve chemically selective imaging by properly selecting imaging parameters. © 2013 American Chemical Society

    Atom-specific forces and defect identification on surface-oxidized Cu(100) with combined 3D-AFM and STM measurements

    Get PDF
    The influence of defects on the local structural, electronic, and chemical properties of a surface oxide on Cu(100) were investigated using atomic resolution three-dimensional force mapping combined with tunneling current measurements and ab initio density functional theory. Results reveal that the maximum attractive force between tip and sample occurs above the oxygen atoms; theory indicates that the tip, in this case, terminates in a Cu atom. Meanwhile, simultaneously acquired tunneling current images emphasize the positions of Cu atoms, thereby, providing species-selective contrast in the two complementary data channels. One immediate outcome is that defects due to the displacement of surface copper are exposed in the current maps, even though force maps only reflect a well-ordered oxygen sublattice. The exact nature of the defects is confirmed by the simulations, which also reveal that the arrangement of the oxygen atoms is not disrupted by the copper displacement. In addition, the experimental force maps uncover a position-dependent modulation of the attractive forces between the surface oxygen and the copper-terminated tips, which is found to reflect the surface's inhomogeneous chemical and structural environment. As a consequence, the demonstrated method has the potential to directly probe how defects affect surface chemical interactions. © 2013 American Physical Society

    Interface and electronic characterization of thin epitaxial Co3O4 films

    Full text link
    The interface and electronic structure of thin (~20-74 nm) Co3O4(110) epitaxial films grown by oxygen-assisted molecular beam epitaxy on MgAl2O4(110) single crystal substrates have been investigated by means of real and reciprocal space techniques. As-grown film surfaces are found to be relatively disordered and exhibit an oblique low energy electron diffraction (LEED) pattern associated with the O-rich CoO2 bulk termination of the (110) surface. Interface and bulk film structure are found to improve significantly with post-growth annealing at 820 K in air and display sharp rectangular LEED patterns, suggesting a surface stoichiometry of the alternative Co2O2 bulk termination of the (110) surface. Non-contact atomic force microscopy demonstrates the presence of wide terraces separated by atomic steps in the annealed films that are not present in the as-grown structures; the step height of ~ 2.7 A corresponds to two atomic layers and confirms a single termination for the annealed films, consistent with the LEED results. A model of the (1 * 1) surfaces that allows for compensation of the polar surfaces is presented.Comment: 8 pages, 7 figure

    TS-Models from Evidential Clustering

    Get PDF
    We study how to derive a fuzzy rule-based classification model using the theoretical framework of belief functions. For this purpose we use the recently proposed Evidential c-means (ECM) to derive Takagi-Sugeno (TS) models solely from data. ECM allocates, for each object, a mass of belief to any subsets of possible clusters, which allows to gain a deeper insight in the data while being robust with respect to outliers. Some classification examples are discussed, which show the advantages and disadvantages of the proposed algorithm

    Co-limitation towards lower latitudes shapes global forest diversity gradients

    Get PDF
    The latitudinal diversity gradient (LDG) is one of the most recognized global patterns of species richness exhibited across a wide range of taxa. Numerous hypotheses have been proposed in the past two centuries to explain LDG, but rigorous tests of the drivers of LDGs have been limited by a lack of high-quality global species richness data. Here we produce a high-resolution (0.025° × 0.025°) map of local tree species richness using a global forest inventory database with individual tree information and local biophysical characteristics from ~1.3 million sample plots. We then quantify drivers of local tree species richness patterns across latitudes. Generally, annual mean temperature was a dominant predictor of tree species richness, which is most consistent with the metabolic theory of biodiversity (MTB). However, MTB underestimated LDG in the tropics, where high species richness was also moderated by topographic, soil and anthropogenic factors operating at local scales. Given that local landscape variables operate synergistically with bioclimatic factors in shaping the global LDG pattern, we suggest that MTB be extended to account for co-limitation by subordinate drivers
    corecore