1,451 research outputs found
Analisis Kinerja Keuangan Bank Bpr Konvensional di Indonesia Periode 2009 Sampai 2012
Tujuan dari penelitian ini adalah untuk membuktikan pengaruh rasio keuanganCapital Adequacy Ratio (CAR), Biaya Operasi dibanding Pendapatan Operasi(BOPO), Non Performing Loan (NPL) dan Loan to Deposit Ratio (LDR) terhadapkinerja bank yang diukur dengan Return On Asset (ROA) serta variabel-variabelmanakah yang paling dominan berpengaruh terhadap Return On Asset (ROA).byek penelitian adalah bank-bank BPR konvensional yang beroperasi di 33 Provinsidi Indonesia pada rentang tahun 2009-2012. Teknik penentuan sampling adalahsampling jenuh atau sensus yaitu dimana semua anggota populasi digunakansebagai sampel yang berarti sampel yang digunakan sama dengan populasi.Sumber data dari publikasi pada website resmi Bank Indonesia, Teknik analisisyang digunakan yaitu analisis regresi berganda. Dari hasil uji F didapat nilai F hitungsebesar 22.432 dengan nilai P value, sig. sebesar 0,000. Hal ini berarti nilai P valuekurang dari 0,05 yang menunjukkan bahwa variabel Capital Adequacy Ratio (CAR),Biaya Operasi dibanding Pendapatan Operasi (BOPO), Non Performing Loan (NPL)dan Loan to Deposit Ratio (LDR) secara bersama-sama berpengaruh terhadapReturn On Asset (ROA). Berdasarkan hasil uji t disimpulkan bahwa Loan to DepositRatio (LDR), Biaya Operasi dibanding Pendapatan Operasi (BOPO) berpengaruhsecara parsial terhadap Return On Asset (ROA) sedangkan Capital Adequacy Ratio(CAR) dan Non Performing Loan (NPL) tidak berpengaruh secara parsial
11 W narrow linewidth laser source at 780nm for laser cooling and manipulation of Rubidium
We present a narrow linewidth continuous laser source with over 11 Watts of
output power at 780nm, based on single-pass frequency doubling of an amplified
1560nm fibre laser with 36% efficiency. This source offers a combination of
high power, simplicity, mode quality and stability. Without any active
stabilization, the linewidth is measured to be below 10kHz. The fibre seed is
tunable over 60GHz, which allows access to the D2 transitions in 87Rb and 85Rb,
providing a viable high-power source for laser cooling as well as for
large-momentum-transfer beamsplitters in atom interferometry. Sources of this
type will pave the way for a new generation of high flux, high duty-cycle
degenerate quantum gas experiments.Comment: 5 pages, 3 figure
A Bose-condensed, simultaneous dual species Mach-Zehnder atom interferometer
This paper presents the first realisation of a simultaneous Rb
-Rb Mach-Zehnder atom interferometer with Bose-condensed atoms. A number
of ambitious proposals for precise terrestrial and space based tests of the
Weak Equivalence Principle rely on such a system. This implementation utilises
hybrid magnetic-optical trapping to produce spatially overlapped condensates
with a duty cycle of 20s. A horizontal optical waveguide with co-linear Bragg
beamsplitters and mirrors is used to simultaneously address both isotopes in
the interferometer. We observe a non-linear phase shift on a non-interacting
Rb interferometer as a function of interferometer time, , which we
show arises from inter-isotope scattering with the co-incident Rb
interferometer. A discussion of implications for future experiments is given.Comment: 7 pages, 5 figures. The authors welcome comments and feedback on this
manuscrip
Optically guided linear Mach Zehnder atom interferometer
We demonstrate a horizontal, linearly guided Mach Zehnder atom interferometer
in an optical waveguide. Intended as a proof-of-principle experiment, the
interferometer utilises a Bose-Einstein condensate in the magnetically
insensitive |F=1,mF=0> state of Rubidium-87 as an acceleration sensitive test
mass. We achieve a modest sensitivity to acceleration of da = 7x10^-4 m/s^2.
Our fringe visibility is as high as 38% in this optically guided atom
interferometer. We observe a time-of-flight in the waveguide of over half a
second, demonstrating the utility of our optical guide for future sensors.Comment: 6 pages, 3 figures. Submitted to Phys. Rev.
A Bright Solitonic Matter-Wave Interferometer
We present the first realisation of a solitonic atom interferometer. A
Bose-Einstein condensate of atoms of rubidium-85 is loaded into a
horizontal optical waveguide. Through the use of a Feshbach resonance, the
-wave scattering length of the Rb atoms is tuned to a small negative
value. This attractive atomic interaction then balances the inherent
matter-wave dispersion, creating a bright solitonic matter wave. A Mach-Zehnder
interferometer is constructed by driving Bragg transitions with the use of an
optical lattice co-linear with the waveguide. Matter wave propagation and
interferometric fringe visibility are compared across a range of -wave
scattering values including repulsive, attractive and non-interacting values.
The solitonic matter wave is found to significantly increase fringe visibility
even compared with a non-interacting cloud.Comment: 6 pages, 4 figure
Optically trapped atom interferometry using the clock transition of large Rb-87 Bose-Einstein condensates
We present a Ramsey-type atom interferometer operating with an optically
trapped sample of 10^6 Bose-condensed Rb-87 atoms. The optical trap allows us
to couple the |F =1, mF =0>\rightarrow |F =2, mF =0> clock states using a
single photon 6.8GHz microwave transition, while state selective readout is
achieved with absorption imaging. Interference fringes with contrast
approaching 100% are observed for short evolution times. We analyse the process
of absorption imaging and show that it is possible to observe atom number
variance directly, with a signal-to-noise ratio ten times better than the
atomic projection noise limit on 10^6 condensate atoms. We discuss the
technical and fundamental noise sources that limit our current system, and
outline the improvements that can be made. Our results indicate that, with
further experimental refinements, it will be possible to produce and measure
the output of a sub-shot-noise limited, large atom number BEC-based
interferometer.
In an addendum to the original paper, we attribute our inability to observe
quantum projection noise to the stability of our microwave oscillator and
background magnetic field. Numerical simulations of the Gross-Pitaevskii
equations for our system show that dephasing due to spatial dynamics driven by
interparticle interactions account for much of the observed decay in fringe
visibility at long interrogation times. The simulations show good agreement
with the experimental data when additional technical decoherence is accounted
for, and suggest that the clock states are indeed immiscible. With smaller
samples of 5 \times 10^4 atoms, we observe a coherence time of {\tau} =
(1.0+0.5-0.3) s.Comment: 22 pages, 6 figures Addendum: 11 pages, 6 figure
Determination Nickel Laterite Profile using Correlation of ERT (Electrical Resistivity Tomography and Drill Core Data
In mineral exploration especially nickel laterite, required a survey technique that could describe subsurface conditions.The method used in this study is ERT (Electrical Resistivity Tomography) with Gradient array. The research was located in South Sulawesi Sorowako correlate between ERT data and drillhole data (Geochemistry & Geology layer) which results describing nickel laterite profile consisting of 4 layers. Limonite layer having resistivity values 150-300 ??.m with an abundance elements of Fe and Al. Transition layer having resistivity values 300-600 ??.m with an abundance elements of Co. Saprolite layer having resistivity values 0-300 ??.m with an abundance elements of Ni. The basic rock layer having resistivity values> 300 ??.m with an abundance elements of Mg and SiO2. The results is the pattern of nickel laterite profile based on the value of the resistivity is more synonymous with nickel laterite profiles based on geochemical compared to geological drillhole data layer
Precision atomic gravimeter based on Bragg diffraction
We present a precision gravimeter based on coherent Bragg diffraction of
freely falling cold atoms. Traditionally, atomic gravimeters have used
stimulated Raman transitions to separate clouds in momentum space by driving
transitions between two internal atomic states. Bragg interferometers utilize
only a single internal state, and can therefore be less susceptible to
environmental perturbations. Here we show that atoms extracted from a
magneto-optical trap using an accelerating optical lattice are a suitable
source for a Bragg atom interferometer, allowing efficient beamsplitting and
subsequent separation of momentum states for detection. Despite the inherently
multi-state nature of atom diffraction, we are able to build a Mach-Zehnder
interferometer using Bragg scattering which achieves a sensitivity to the
gravitational acceleration of with an
integration time of 1000s. The device can also be converted to a gravity
gradiometer by a simple modification of the light pulse sequence.Comment: 13 pages, 11 figure
High expression of nicotinamide N-methyltransferase in patients with sporadic Alzheimer’s disease
We have previously shown that the expression of nicotinamide N-methyltransferase (NNMT) is significantly increased in the brains of patients who have died of Parkinson’s disease (PD). In this study, we have compared the expression of NNMT in post-mortem medial temporal lobe, hippocampus and cerebellum of 10 Alzheimer’s disease (AD) and 9 non-disease control subjects using a combination of quantitative Western blotting, immunohistochemistry and dual-label confocal microscopy coupled with quantitative analysis of colocalisation. NNMT was detected as a single protein of 29 kDa in both AD and non-disease control brains, which was significantly increased in AD medial temporal lobe compared to non-disease controls (7.5-fold, P < 0.026). There was no significant difference in expression in the cerebellum (P = 0.91). NNMT expression in AD medial temporal lobe and hippocampus was present in cholinergic neurones with no glial localisation. Cell-type expression was identical in both non-disease control and AD tissues. These results are the first to show, in a proof-of-concept study using a small patient cohort, that NNMT protein expression is increased in the AD brain and is present in neurones which degenerate in AD. These results suggest that the elevation of NNMT may be a common feature of many neurodegenerative diseases. Confirmation of this overexpression using a larger AD patient cohort will drive the future development of NNMT-targetting therapeutics which may slow or stop the disease pathogenesis, in contrast to current therapies which solely address AD symptoms
- …