236 research outputs found

    Photon Propagation in Dense Media

    Full text link
    Using thermal field theory, we derive simple analytic expressions for the spectral density of photons in degenerate QED plasmas, without assuming the usual non or ultra-relativistic limit. We recover the standard results in both cases. Although very similar in ultra-relativistic plasmas, transverse and longitudinal excitations behave very differently as the electron Fermi momentum decreases.Comment: 12pp (3 PS figures available upon request), ENSLAPP-A-412/9

    Axion Emission from Red Giants and White Dwarfs

    Full text link
    Using thermal field theory methods, we recalculate axion emission from dense plasmas. We study in particular the Primakoff and the bremsstrahlung processes. The Primakoff rate is significantly suppressed at high densities, when the electrons become relativistic. However, the bound on the axion-photon coupling, G<1010G<10^{-10} GeV, is unaffected, as it is constrained by the evolution of HB stars, which have low densities. In contradistinction, the same relativistic effects enhance the bremsstrahlung processes. From the red giants and white dwarfs evolution, we obtain a conservative bound on the axion-electron coupling, gae<2×1013g_{ae} < 2\times 10^{-13}.Comment: 17 pp, 3 PS figures, CERN-TH-7044/9

    Thermal quark production in ultra-relativistic nuclear collisions

    Full text link
    We calculate thermal production of u, d, s, c and b quarks in ultra-relativistic heavy ion collisions. The following processes are taken into account: thermal gluon decay (g to ibar i), gluon fusion (g g to ibar i), and quark-antiquark annihilation (jbar j to ibar i), where i and j represent quark species. We use the thermal quark masses, mi2(T)mi2+(2g2/9)T2m_i^2(T)\simeq m_i^2 + (2g^2/9)T^2, in all the rates. At small mass (mi(T)<2Tm_i(T)<2T), the production is largely dominated by the thermal gluon decay channel. We obtain numerical and analytic solutions of one-dimensional hydrodynamic expansion of an initially pure glue plasma. Our results show that even in a quite optimistic scenario, all quarks are far from chemical equilibrium throughout the expansion. Thermal production of light quarks (u, d and s) is nearly independent of species. Heavy quark (c and b) production is quite independent of the transition temperature and could serve as a very good probe of the initial temperature. Thermal quark production measurements could also be used to determine the gluon damping rate, or equivalently the magnetic mass.Comment: 14 pages (latex) plus 6 figures (uuencoded postscript files); CERN-TH.7038/9

    Two Loop Low Temperature Corrections to Electron Self Energy

    Full text link
    We recalculate the two loop corrections in the background heat bath using real time formalism. The procedure of the integrations of loop momenta with dependence on finite temperature before the momenta without it, has been followed. We determine the mass and wavefunction renormalization constants in the low temperature limit of QED, for the first time with this preferred order of integrations. The correction to electron mass and spinors in this limit is important in the early universe at the time of primordial nucleosynthesis as well as in astrophysics.Comment: 8 pages and 1 figure to appear in Chinese Physics

    The heavy fermion damping rate puzzle

    Full text link
    : We examine again the problem of the damping rate of a moving heavy fermion in a hot plasma within the resummed perturbative theory of Pisarski and Braaten. The ansatz for its evaluation which relates it to the imaginary part of the fermion propagator pole in the framework of a self-consistent approach is critically analyzed. As already pointed out by various authors, the only way to define the rate is through additional implementation of magnetic screening. We show in detail how the ansatz works in this case and where we disagree with other authors. We conclude that the self-consistent approach is not satisfactory.Comment: 17 page

    Generalized Boltzmann equations for on-shell particle production in a hot plasma

    Get PDF
    A novel refinement of the conventional treatment of Kadanoff--Baym equations is suggested. Besides the Boltzmann equation another differential equation is used for calculating the evolution of the non-equilibrium two-point function. Although it was usually interpreted as a constraint on the solution of the Boltzmann equation, we argue that its dynamics is relevant to the determination and resummation of the particle production cut contributions. The differential equation for this new contribution is illustrated in the example of the cubic scalar model. The analogue of the relaxation time approximation is suggested. It results in the shift of the threshold location and in smearing out of the non-analytic threshold behaviour of the spectral function. Possible consequences for the dilepton production are discussed.Comment: 22 pages, latex, 2 ps figure

    Radiative Neutrino Decay in Media

    Get PDF
    In this letter we introduce a new method to determine the radiative neutrino decay rate in the presence of a medium. Our approach is based on the generalisation of the optical theorem at finite temperature and density. Differently from previous works on this subject, our method allows to account for dispersive and dissipative electromagnetic properties of the medium. Some inconsistencies that are present in the literature are pointed-out and corrected here. We shortly discuss the relevance of our results for neutrino evolution in the early universe.Comment: 11 pages, 3 encapsulated figure

    Dileptons from hot heavy static photons

    Full text link
    We compute the production rate of lepton pair by static photons at finite temperature at two-loop order. We treat the infrared region of the gluon phase space carefully by using a hard thermal loop gluon propagator. The result is free of infrared and collinear divergences and exhibits an enhancement which produces a result of order e2g3\sim e^2 g^3 instead of e2g4\sim e^2 g^4 as would be expected from ordinary perturbation theory.Comment: 14 pages, 2 figure

    Two mechanisms for the elimination of pinch singularities in out of equilibrium thermal field theories

    Full text link
    We analyze ill-defined pinch singularities characteristic of out of equilibrium thermal field theories. We identify two mechanisms that eliminate pinching even at the single self-energy insertion approximation to the propagator: the first is based on the vanishing of phase space at the singular point (threshold effect). It is effective in QED with a massive electron and a massless photon. In massless QCD, this mechanism fails, but the pinches cancel owing to the second mechanism, i.e., owing to the spinor/tensor structure of the single self-energy insertion contribution to the propagator. The constraints imposed on distribution functions are very reasonable.Comment: 24 pages, Latex, no figures, revised version, many minor changes and correction

    On the imaginary parts and infrared divergences of two-loop vector boson self-energies in thermal QCD

    Get PDF
    We calculate the imaginary part of the retarded two-loop self-energy of a static vector boson in a plasma of quarks and gluons of temperature T, using the imaginary time formalism. We recombine various cuts of the self-energy to generate physical processes. We demonstrate how cuts containing loops may be reinterpreted in terms of interference between Order α\alpha tree diagrams and the Born term along with spectators from the medium. We apply our results to the rate of dilepton production in the limit of dilepton invariant mass E>>T. We find that all infrared and collinear singularities cancel in the final result obtained in this limit.Comment: references added, typos corrected, slightly abridged, version accepted for publication in Phys. Rev.
    corecore