59 research outputs found

    Loophole-free Bell test based on local precertification of photon's presence

    Get PDF
    A loophole-free violation of Bell inequalities is of fundamental importance for demonstrating quantum nonlocality and long-distance device-independent secure communication. However, transmission losses represent a fundamental limitation for photonic loophole-free Bell tests. A local precertification of the presence of the photons immediately before the local measurements may solve this problem. We show that local precertification is feasible by integrating three current technologies: (i) enhanced single-photon down-conversion to locally create a flag photon, (ii) nanowire-based superconducting single-photon detectors for a fast flag detection, and (iii) superconducting transition-edge sensors to close the detection loophole. We carry out a precise space-time analysis of the proposed scheme, showing its viability and feasibility.Comment: REVTeX4, 7 Pages, 1 figur

    Ancilla-assisted quantum process tomography

    Get PDF
    Complete and precise characterization of a quantum dynamical process can be achieved via the method of quantum process tomography. Using a source of correlated photons, we have implemented several methods investigating a wide range of processes, e.g., unitary, decohering, and polarizing. One of these methods, ancilla-assisted process tomography (AAPT), makes use of an additional ``ancilla system,'' and we have theoretically determined the conditions when AAPT is possible. All prior schemes for AAPT make use of entangled states. Our results show that, surprisingly, entanglement is not required for AAPT, and we present process tomography data obtained using an input state that has no entanglement. However, the use of entanglement yields superior results.Comment: To appear in Physical Review Letter

    Photon-Photon Entanglement with a Single Trapped Atom

    Full text link
    An experiment is performed where a single rubidium atom trapped within a high-finesse optical cavity emits two independently triggered entangled photons. The entanglement is mediated by the atom and is characterized both by a Bell inequality violation of S=2.5, as well as full quantum-state tomography, resulting in a fidelity exceeding F=90%. The combination of cavity-QED and trapped atom techniques makes our protocol inherently deterministic - an essential step for the generation of scalable entanglement between the nodes of a distributed quantum network.Comment: 5 pages, 4 figure

    Quantum steering ellipsoids, extremal physical states and monogamy

    Get PDF
    A Corrigendum for this article has been published in 2015 New J. Phys. 17 019501Any two-qubit state can be faithfully represented by a steering ellipsoid inside the Bloch sphere, but not every ellipsoid inside the Bloch sphere corresponds to a two-qubit state. We give necessary and sufficient conditions for when the geometric data describe a physical state and investigate maximal volume ellipsoids lying on the physical-unphysical boundary. We derive monogamy relations for steering that are strictly stronger than the Coffman-Kundu- Wootters (CKW) inequality for monogamy of concurrence. The CKW result is thus found to follow from the simple perspective of steering ellipsoid geometry. Remarkably, we can also use steering ellipsoids to derive non-trivial results in classical Euclidean geometry, extending Eulers inequality for the circumradius and inradius of a triangle.The EPSRC and the ARC Centre of Excellence grant no. CE110001027. DJ is funded by the Royal Society. TR would like to thank the Leverhulme Trust. SJ acknowledges EPSRC grant EP/ K022512/1

    Detection-Loophole-Free Test of Quantum Nonlocality, and Applications

    Full text link
    We present a source of entangled photons that violates a Bell inequality free of the "fair-sampling" assumption, by over 7 standard deviations. This violation is the first experiment with photons to close the detection loophole, and we demonstrate enough "efficiency" overhead to eventually perform a fully loophole-free test of local realism. The entanglement quality is verified by maximally violating additional Bell tests, testing the upper limit of quantum correlations. Finally, we use the source to generate secure private quantum random numbers at rates over 4 orders of magnitude beyond previous experiments.Comment: Main text: 5 pages, 2 figures, 1 table. Supplementary Information: 7 pages, 2 figure

    Optimal, reliable estimation of quantum states

    Get PDF
    Accurately inferring the state of a quantum device from the results of measurements is a crucial task in building quantum information processing hardware. The predominant state estimation procedure, maximum likelihood estimation (MLE), generally reports an estimate with zero eigenvalues. These cannot be justified. Furthermore, the MLE estimate is incompatible with error bars, so conclusions drawn from it are suspect. I propose an alternative procedure, Bayesian mean estimation (BME). BME never yields zero eigenvalues, its eigenvalues provide a bound on their own uncertainties, and it is the most accurate procedure possible. I show how to implement BME numerically, and how to obtain natural error bars that are compatible with the estimate. Finally, I briefly discuss the differences between Bayesian and frequentist estimation techniques.Comment: RevTeX; 14 pages, 2 embedded figures. Comments enthusiastically welcomed

    Experimental investigation of the dynamics of entanglement: Sudden death, complementarity, and continuous monitoring of the environment

    Get PDF
    We report on an experimental investigation of the dynamics of entanglement between a single qubit and its environment, as well as for pairs of qubits interacting independently with individual environments, using photons obtained from parametric down-conversion. The qubits are encoded in the polarizations of single photons, while the interaction with the environment is implemented by coupling the polarization of each photon with its momentum. A convenient Sagnac interferometer allows for the implementation of several decoherence channels and for the continuous monitoring of the environment. For an initially-entangled photon pair, one observes the vanishing of entanglement before coherence disappears. For a single qubit interacting with an environment, the dynamics of complementarity relations connecting single-qubit properties and its entanglement with the environment is experimentally determined. The evolution of a single qubit under continuous monitoring of the environment is investigated, demonstrating that a qubit may decay even when the environment is found in the unexcited state. This implies that entanglement can be increased by local continuous monitoring, which is equivalent to entanglement distillation. We also present a detailed analysis of the transfer of entanglement from the two-qubit system to the two corresponding environments, between which entanglement may suddenly appear, and show instances for which no entanglement is created between dephasing environments, nor between each of them and the corresponding qubit: the initial two-qubit entanglement gets transformed into legitimate multiqubit entanglement of the Greenberger-Horne-Zeilinger (GHZ) type.Comment: 15 pages, 14 figures; only .ps was working, now .pdf is also availabl

    Beating the channel capacity limit for linear photonic superdense coding

    Full text link
    Dense coding is arguably the protocol that launched the field of quantum communication. Today, however, more than a decade after its initial experimental realization, the channel capacity remains fundamentally limited as conceived for photons using linear elements. Bob can only send to Alice three of four potential messages owing to the impossibility of carrying out the deterministic discrimination of all four Bell states with linear optics, reducing the attainable channel capacity from 2 to log_2 3 \approx 1.585 bits. However, entanglement in an extra degree of freedom enables the complete and deterministic discrimination of all Bell states. Using pairs of photons simultaneously entangled in spin and orbital angular momentum, we demonstrate the quantum advantage of the ancillary entanglement. In particular, we describe a dense-coding experiment with the largest reported channel capacity and, to our knowledge, the first to break the conventional linear-optics threshold. Our encoding is suited for quantum communication without alignment and satellite communication.Comment: Letter: 6 pages, 4 figures. Supplementary Information: 4 pages, 1 figur

    Measuring measurement

    Full text link
    Measurement connects the world of quantum phenomena to the world of classical events. It plays both a passive role, observing quantum systems, and an active one, preparing quantum states and controlling them. Surprisingly - in the light of the central status of measurement in quantum mechanics - there is no general recipe for designing a detector that measures a given observable. Compounding this, the characterization of existing detectors is typically based on partial calibrations or elaborate models. Thus, experimental specification (i.e. tomography) of a detector is of fundamental and practical importance. Here, we present the realization of quantum detector tomography: we identify the optimal positive-operator-valued measure describing the detector, with no ancillary assumptions. This result completes the triad, state, process, and detector tomography, required to fully specify an experiment. We characterize an avalanche photodiode and a photon number resolving detector capable of detecting up to eight photons. This creates a new set of tools for accurately detecting and preparing non-classical light.Comment: 6 pages, 4 figures,see video abstract at http://www.quantiki.org/video_abstracts/0807244

    Continuous-variable optical quantum state tomography

    Full text link
    This review covers latest developments in continuous-variable quantum-state tomography of optical fields and photons, placing a special accent on its practical aspects and applications in quantum information technology. Optical homodyne tomography is reviewed as a method of reconstructing the state of light in a given optical mode. A range of relevant practical topics are discussed, such as state-reconstruction algorithms (with emphasis on the maximum-likelihood technique), the technology of time-domain homodyne detection, mode matching issues, and engineering of complex quantum states of light. The paper also surveys quantum-state tomography for the transverse spatial state (spatial mode) of the field in the special case of fields containing precisely one photon.Comment: Finally, a revision! Comments to lvov(at)ucalgary.ca and raymer(at)uoregon.edu are welcom
    • …
    corecore