81 research outputs found
Ultrafast switching of photonic entanglement
To deploy and operate a quantum network which utilizes existing
telecommunications infrastructure, it is necessary to be able to route
entangled photons at high speeds, with minimal loss and signal-band noise,
and---most importantly---without disturbing the photons' quantum state. Here we
present a switch which fulfills these requirements and characterize its
performance at the single photon level; it exhibits a 200-ps switching window,
a 120:1 contrast ratio, 1.5 dB loss, and induces no measurable degradation in
the switched photons' entangled-state fidelity (< 0.002). Furthermore, because
this type of switch couples the temporal and spatial degrees of freedom, it
provides an important new tool with which to encode multiple-qubit states in a
single photon. As a proof-of-principle demonstration of this capability, we
demultiplex a single quantum channel from a dual-channel,
time-division-multiplexed entangled photon stream, effectively performing a
controlled-bit-flip on a two-qubit subspace of a five-qubit, two-photon state
All-optical switching of photonic entanglement
Future quantum optical networks will require the ability to route entangled
photons at high speeds, with minimal loss and added in-band noise, and---most
importantly---without disturbing the photons' quantum state. Here we present an
all-optical switch which fulfills these requirements and characterize its
performance at the single photon level. It exhibits a 200-ps switching window,
120:1 contrast, 1.5-dB loss, and induces no measurable degradation in the
switched photons' entangled-state fidelity (< 0.002). As a proof-of-principle
demonstration of its capability, we use the switch to demultiplex a single
quantum channel from a dual-channel, time-division-multiplexed entangled photon
stream. Furthermore, because this type of switch couples the temporal and
spatial degrees of freedom, it provides an important new tool with which to
encode multiple-qubit quantum states on a single photon
Loophole-free Bell test based on local precertification of photon's presence
A loophole-free violation of Bell inequalities is of fundamental importance
for demonstrating quantum nonlocality and long-distance device-independent
secure communication. However, transmission losses represent a fundamental
limitation for photonic loophole-free Bell tests. A local precertification of
the presence of the photons immediately before the local measurements may solve
this problem. We show that local precertification is feasible by integrating
three current technologies: (i) enhanced single-photon down-conversion to
locally create a flag photon, (ii) nanowire-based superconducting single-photon
detectors for a fast flag detection, and (iii) superconducting transition-edge
sensors to close the detection loophole. We carry out a precise space-time
analysis of the proposed scheme, showing its viability and feasibility.Comment: REVTeX4, 7 Pages, 1 figur
A pulsed Sagnac source of narrowband polarization-entangled photons
We demonstrate pulsed operation of a bidirectionally pumped polarization
Sagnac interferometric down-conversion source and its generation of narrowband,
high-visibility polarization-entangled photons. Driven by a narrowband,
mode-locked pump at 390.35 nm, the phase-stable Sagnac source with a type-II
phase-matched periodically poled KTiOPO crystal is capable of producing
0.01 entangled pair per pulse in a 0.15-nm bandwidth centered at 780.7 nm with
1 mW of average pump power at a repetition rate of 31.1 MHz. We have achieved a
mean photon-pair generation rate of as high as 0.7 pair per pulse, at which
multi-pair events dominate and significantly reduce the two-photon
quantum-interference visibility. For low generation probability , the
reduced visibility is independent of the throughput efficiency and
of the polarization analysis basis, which can be utilized to yield an accurate
estimate of the generation rate . At low we have characterized
the source entanglement quality in three different ways: average
quantum-interference visibility of 99%, the Clauser-Horne-Shimony-Holt
parameter of , and quantum state tomography with 98.85%
singlet-state fidelity. The narrowband pulsed Sagnac source of entangled
photons is suitable for use in quantum information processing applications such
as free-space quantum key distribution.Comment: 10 pages, 6 figures, accepted for publication in Phys. Rev.
Probing -Spin Correlations in Optical Lattices
We propose a technique to measure multi-spin correlation functions of
arbitrary range as determined by the ground states of spinful cold atoms in
optical lattices. We show that an observation of the atomic version of the
Stokes parameters, using focused lasers and microwave pulsing, can be related
to -spin correlators. We discuss the possibility of detecting not only
ground state static spin correlations, but also time-dependent spin wave
dynamics as a demonstrative example using our proposed technique.Comment: 7 pages, 4 figure
Photon-Photon Entanglement with a Single Trapped Atom
An experiment is performed where a single rubidium atom trapped within a
high-finesse optical cavity emits two independently triggered entangled
photons. The entanglement is mediated by the atom and is characterized both by
a Bell inequality violation of S=2.5, as well as full quantum-state tomography,
resulting in a fidelity exceeding F=90%. The combination of cavity-QED and
trapped atom techniques makes our protocol inherently deterministic - an
essential step for the generation of scalable entanglement between the nodes of
a distributed quantum network.Comment: 5 pages, 4 figure
Quantum storage of polarization qubits in birefringent and anisotropically absorbing materials
Storage of quantum information encoded into true single photons is an
essential constituent of long-distance quantum communication based on quantum
repeaters and of optical quantum information processing. The storage of
photonic polarization qubits is, however, complicated by the fact that many
materials are birefringent and have polarization-dependent absorption. Here we
present and demonstrate a simple scheme that allows compensating for these
polarization effects. The scheme is demonstrated using a solid-state quantum
memory implemented with an ensemble of rare-earth ions doped into a biaxial
yttrium orthosilicate () crystal. Heralded single photons generated
from a filtered spontaneous parametric downconversion source are stored, and
quantum state tomography of the retrieved polarization state reveals an average
fidelity of , which is significantly higher than what is
achievable with a measure-and-prepare strategy.Comment: 7 pages, 3 figures, 1 table, corrected typos and added ref. 3
Ancilla-assisted quantum process tomography
Complete and precise characterization of a quantum dynamical process can be
achieved via the method of quantum process tomography. Using a source of
correlated photons, we have implemented several methods investigating a wide
range of processes, e.g., unitary, decohering, and polarizing. One of these
methods, ancilla-assisted process tomography (AAPT), makes use of an additional
``ancilla system,'' and we have theoretically determined the conditions when
AAPT is possible. All prior schemes for AAPT make use of entangled states. Our
results show that, surprisingly, entanglement is not required for AAPT, and we
present process tomography data obtained using an input state that has no
entanglement. However, the use of entanglement yields superior results.Comment: To appear in Physical Review Letter
Remote Entanglement between a Single Atom and a Bose-Einstein Condensate
Entanglement between stationary systems at remote locations is a key resource
for quantum networks. We report on the experimental generation of remote
entanglement between a single atom inside an optical cavity and a Bose-Einstein
condensate (BEC). To produce this, a single photon is created in the
atom-cavity system, thereby generating atom-photon entanglement. The photon is
transported to the BEC and converted into a collective excitation in the BEC,
thus establishing matter-matter entanglement. After a variable delay, this
entanglement is converted into photon-photon entanglement. The matter-matter
entanglement lifetime of 100 s exceeds the photon duration by two orders
of magnitude. The total fidelity of all concatenated operations is 95%. This
hybrid system opens up promising perspectives in the field of quantum
information
Entanglement of Trapped-Ion Clock States
A M{\o}lmer-S{\o}rensen entangling gate is realized for pairs of trapped
Cd ions using magnetic-field insensitive "clock" states and an
implementation offering reduced sensitivity to optical phase drifts. The gate
is used to generate the complete set of four entangled states, which are
reconstructed and evaluated with quantum-state tomography. An average
target-state fidelity of 0.79 is achieved, limited by available laser power and
technical noise. The tomographic reconstruction of entangled states
demonstrates universal quantum control of two ion-qubits, which through
multiplexing can provide a route to scalable architectures for trapped-ion
quantum computing.Comment: 6 pages, 5 figure
- …