81 research outputs found

    Ultrafast switching of photonic entanglement

    Full text link
    To deploy and operate a quantum network which utilizes existing telecommunications infrastructure, it is necessary to be able to route entangled photons at high speeds, with minimal loss and signal-band noise, and---most importantly---without disturbing the photons' quantum state. Here we present a switch which fulfills these requirements and characterize its performance at the single photon level; it exhibits a 200-ps switching window, a 120:1 contrast ratio, 1.5 dB loss, and induces no measurable degradation in the switched photons' entangled-state fidelity (< 0.002). Furthermore, because this type of switch couples the temporal and spatial degrees of freedom, it provides an important new tool with which to encode multiple-qubit states in a single photon. As a proof-of-principle demonstration of this capability, we demultiplex a single quantum channel from a dual-channel, time-division-multiplexed entangled photon stream, effectively performing a controlled-bit-flip on a two-qubit subspace of a five-qubit, two-photon state

    All-optical switching of photonic entanglement

    Full text link
    Future quantum optical networks will require the ability to route entangled photons at high speeds, with minimal loss and added in-band noise, and---most importantly---without disturbing the photons' quantum state. Here we present an all-optical switch which fulfills these requirements and characterize its performance at the single photon level. It exhibits a 200-ps switching window, 120:1 contrast, 1.5-dB loss, and induces no measurable degradation in the switched photons' entangled-state fidelity (< 0.002). As a proof-of-principle demonstration of its capability, we use the switch to demultiplex a single quantum channel from a dual-channel, time-division-multiplexed entangled photon stream. Furthermore, because this type of switch couples the temporal and spatial degrees of freedom, it provides an important new tool with which to encode multiple-qubit quantum states on a single photon

    Loophole-free Bell test based on local precertification of photon's presence

    Get PDF
    A loophole-free violation of Bell inequalities is of fundamental importance for demonstrating quantum nonlocality and long-distance device-independent secure communication. However, transmission losses represent a fundamental limitation for photonic loophole-free Bell tests. A local precertification of the presence of the photons immediately before the local measurements may solve this problem. We show that local precertification is feasible by integrating three current technologies: (i) enhanced single-photon down-conversion to locally create a flag photon, (ii) nanowire-based superconducting single-photon detectors for a fast flag detection, and (iii) superconducting transition-edge sensors to close the detection loophole. We carry out a precise space-time analysis of the proposed scheme, showing its viability and feasibility.Comment: REVTeX4, 7 Pages, 1 figur

    A pulsed Sagnac source of narrowband polarization-entangled photons

    Full text link
    We demonstrate pulsed operation of a bidirectionally pumped polarization Sagnac interferometric down-conversion source and its generation of narrowband, high-visibility polarization-entangled photons. Driven by a narrowband, mode-locked pump at 390.35 nm, the phase-stable Sagnac source with a type-II phase-matched periodically poled KTiOPO4_4 crystal is capable of producing 0.01 entangled pair per pulse in a 0.15-nm bandwidth centered at 780.7 nm with 1 mW of average pump power at a repetition rate of 31.1 MHz. We have achieved a mean photon-pair generation rate of as high as 0.7 pair per pulse, at which multi-pair events dominate and significantly reduce the two-photon quantum-interference visibility. For low generation probability α\alpha, the reduced visibility V=1αV=1-\alpha is independent of the throughput efficiency and of the polarization analysis basis, which can be utilized to yield an accurate estimate of the generation rate α\alpha. At low α\alpha we have characterized the source entanglement quality in three different ways: average quantum-interference visibility of 99%, the Clauser-Horne-Shimony-Holt SS parameter of 2.739±0.1192.739 \pm 0.119, and quantum state tomography with 98.85% singlet-state fidelity. The narrowband pulsed Sagnac source of entangled photons is suitable for use in quantum information processing applications such as free-space quantum key distribution.Comment: 10 pages, 6 figures, accepted for publication in Phys. Rev.

    Probing nn-Spin Correlations in Optical Lattices

    Full text link
    We propose a technique to measure multi-spin correlation functions of arbitrary range as determined by the ground states of spinful cold atoms in optical lattices. We show that an observation of the atomic version of the Stokes parameters, using focused lasers and microwave pulsing, can be related to nn-spin correlators. We discuss the possibility of detecting not only ground state static spin correlations, but also time-dependent spin wave dynamics as a demonstrative example using our proposed technique.Comment: 7 pages, 4 figure

    Photon-Photon Entanglement with a Single Trapped Atom

    Full text link
    An experiment is performed where a single rubidium atom trapped within a high-finesse optical cavity emits two independently triggered entangled photons. The entanglement is mediated by the atom and is characterized both by a Bell inequality violation of S=2.5, as well as full quantum-state tomography, resulting in a fidelity exceeding F=90%. The combination of cavity-QED and trapped atom techniques makes our protocol inherently deterministic - an essential step for the generation of scalable entanglement between the nodes of a distributed quantum network.Comment: 5 pages, 4 figure

    Quantum storage of polarization qubits in birefringent and anisotropically absorbing materials

    Full text link
    Storage of quantum information encoded into true single photons is an essential constituent of long-distance quantum communication based on quantum repeaters and of optical quantum information processing. The storage of photonic polarization qubits is, however, complicated by the fact that many materials are birefringent and have polarization-dependent absorption. Here we present and demonstrate a simple scheme that allows compensating for these polarization effects. The scheme is demonstrated using a solid-state quantum memory implemented with an ensemble of rare-earth ions doped into a biaxial yttrium orthosilicate (Y2SiO5Y_2SiO_5) crystal. Heralded single photons generated from a filtered spontaneous parametric downconversion source are stored, and quantum state tomography of the retrieved polarization state reveals an average fidelity of 97.5±0.497.5 \pm 0.4%, which is significantly higher than what is achievable with a measure-and-prepare strategy.Comment: 7 pages, 3 figures, 1 table, corrected typos and added ref. 3

    Ancilla-assisted quantum process tomography

    Get PDF
    Complete and precise characterization of a quantum dynamical process can be achieved via the method of quantum process tomography. Using a source of correlated photons, we have implemented several methods investigating a wide range of processes, e.g., unitary, decohering, and polarizing. One of these methods, ancilla-assisted process tomography (AAPT), makes use of an additional ``ancilla system,'' and we have theoretically determined the conditions when AAPT is possible. All prior schemes for AAPT make use of entangled states. Our results show that, surprisingly, entanglement is not required for AAPT, and we present process tomography data obtained using an input state that has no entanglement. However, the use of entanglement yields superior results.Comment: To appear in Physical Review Letter

    Remote Entanglement between a Single Atom and a Bose-Einstein Condensate

    Full text link
    Entanglement between stationary systems at remote locations is a key resource for quantum networks. We report on the experimental generation of remote entanglement between a single atom inside an optical cavity and a Bose-Einstein condensate (BEC). To produce this, a single photon is created in the atom-cavity system, thereby generating atom-photon entanglement. The photon is transported to the BEC and converted into a collective excitation in the BEC, thus establishing matter-matter entanglement. After a variable delay, this entanglement is converted into photon-photon entanglement. The matter-matter entanglement lifetime of 100 μ\mus exceeds the photon duration by two orders of magnitude. The total fidelity of all concatenated operations is 95%. This hybrid system opens up promising perspectives in the field of quantum information

    Entanglement of Trapped-Ion Clock States

    Full text link
    A M{\o}lmer-S{\o}rensen entangling gate is realized for pairs of trapped 111^{111}Cd+^+ ions using magnetic-field insensitive "clock" states and an implementation offering reduced sensitivity to optical phase drifts. The gate is used to generate the complete set of four entangled states, which are reconstructed and evaluated with quantum-state tomography. An average target-state fidelity of 0.79 is achieved, limited by available laser power and technical noise. The tomographic reconstruction of entangled states demonstrates universal quantum control of two ion-qubits, which through multiplexing can provide a route to scalable architectures for trapped-ion quantum computing.Comment: 6 pages, 5 figure
    corecore