research

Entanglement of Trapped-Ion Clock States

Abstract

A M{\o}lmer-S{\o}rensen entangling gate is realized for pairs of trapped 111^{111}Cd+^+ ions using magnetic-field insensitive "clock" states and an implementation offering reduced sensitivity to optical phase drifts. The gate is used to generate the complete set of four entangled states, which are reconstructed and evaluated with quantum-state tomography. An average target-state fidelity of 0.79 is achieved, limited by available laser power and technical noise. The tomographic reconstruction of entangled states demonstrates universal quantum control of two ion-qubits, which through multiplexing can provide a route to scalable architectures for trapped-ion quantum computing.Comment: 6 pages, 5 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 01/04/2019