To deploy and operate a quantum network which utilizes existing
telecommunications infrastructure, it is necessary to be able to route
entangled photons at high speeds, with minimal loss and signal-band noise,
and---most importantly---without disturbing the photons' quantum state. Here we
present a switch which fulfills these requirements and characterize its
performance at the single photon level; it exhibits a 200-ps switching window,
a 120:1 contrast ratio, 1.5 dB loss, and induces no measurable degradation in
the switched photons' entangled-state fidelity (< 0.002). Furthermore, because
this type of switch couples the temporal and spatial degrees of freedom, it
provides an important new tool with which to encode multiple-qubit states in a
single photon. As a proof-of-principle demonstration of this capability, we
demultiplex a single quantum channel from a dual-channel,
time-division-multiplexed entangled photon stream, effectively performing a
controlled-bit-flip on a two-qubit subspace of a five-qubit, two-photon state