85 research outputs found

    Symptomatic hypogammaglobulinemia in infancy and childhood – clinical outcome and in vitro immune responses

    Get PDF
    BACKGROUND: Symptomatic hypogammaglobulinemia in infancy and childhood (SHIC), may be an early manifestation of a primary immunodeficiency or a maturational delay in the normal production of immunoglobulins (Ig). We aimed to evaluate the natural course of SHIC and correlate in vitro lymphoproliferative and secretory responses with recovery of immunoglobulin values and clinical resolution. METHODS: Children, older than 1 year of age, referred to our specialist clinic because of recurrent infections and serum immunoglobulin (Ig) levels 2 SD below the mean for age, were followed for a period of 8 years. Patient with any known familial, clinical or laboratory evidence of cellular immunodeficiency or other immunodeficiency syndromes were excluded from this cohort. Evaluation at 6- to 12-months intervals continued up to 1 year after resolution of symptoms. In a subgroup of patients, in vitro lymphocyte proliferation and Ig secretion in response to mitogens was performed. RESULTS: 32 children, 24 (75%) males, 8 (25%) females, mean age 3.4 years fulfilled the inclusion criteria. Clinical presentation: ENT infections 69%, respiratory 81%, diarrhea 12.5%. During follow-up, 17 (53%) normalized serum Ig levels and were diagnosed as transient hypogammaglobulinemia of infancy (THGI). THGI patients did not differ clinically or demographically from non-transient patients, both having a benign clinical outcome. In vitro Ig secretory responses, were lower in hypogammaglobulinemic, compared to normal children and did not normalize concomitantly with serum Ig's in THGI patients. CONCLUSIONS: The majority of children with SHIC in the first decade of life have THGI. Resolution of symptoms as well as normalization of Ig values may be delayed, but overall the clinical outcome is good and the clinical course benign

    Benchmarking of cell type deconvolution pipelines for transcriptomics data

    Get PDF
    Many computational methods have been developed to infer cell type proportions from bulk transcriptomics data. However, an evaluation of the impact of data transformation, pre-processing, marker selection, cell type composition and choice of methodology on the deconvolution results is still lacking. Using five single-cell RNA-sequencing (scRNA-seq) datasets, we generate pseudo-bulk mixtures to evaluate the combined impact of these factors. Both bulk deconvolution methodologies and those that use scRNA-seq data as reference perform best when applied to data in linear scale and the choice of normalization has a dramatic impact on some, but not all methods. Overall, methods that use scRNA-seq data have comparable performance to the best performing bulk methods whereas semi-supervised approaches show higher error values. Moreover, failure to include cell types in the reference that are present in a mixture leads to substantially worse results, regardless of the previous choices. Altogether, we evaluate the combined impact of factors affecting the deconvolution task across different datasets and propose general guidelines to maximize its performance. Inferring cell type proportions from transcriptomics data is affected by data transformation, normalization, choice of method and the markers used. Here, the authors use single-cell RNAseq datasets to evaluate the impact of these factors and propose guidelines to maximise deconvolution performance

    Prioritizing Risks and Uncertainties from Intentional Release of Selected Category A Pathogens

    Get PDF
    This paper synthesizes available information on five Category A pathogens (Bacillus anthracis, Yersinia pestis, Francisella tularensis, Variola major and Lassa) to develop quantitative guidelines for how environmental pathogen concentrations may be related to human health risk in an indoor environment. An integrated model of environmental transport and human health exposure to biological pathogens is constructed which 1) includes the effects of environmental attenuation, 2) considers fomite contact exposure as well as inhalational exposure, and 3) includes an uncertainty analysis to identify key input uncertainties, which may inform future research directions. The findings provide a framework for developing the many different environmental standards that are needed for making risk-informed response decisions, such as when prophylactic antibiotics should be distributed, and whether or not a contaminated area should be cleaned up. The approach is based on the assumption of uniform mixing in environmental compartments and is thus applicable to areas sufficiently removed in time and space from the initial release that mixing has produced relatively uniform concentrations. Results indicate that when pathogens are released into the air, risk from inhalation is the main component of the overall risk, while risk from ingestion (dermal contact for B. anthracis) is the main component of the overall risk when pathogens are present on surfaces. Concentrations sampled from untracked floor, walls and the filter of heating ventilation and air conditioning (HVAC) system are proposed as indicators of previous exposure risk, while samples taken from touched surfaces are proposed as indicators of future risk if the building is reoccupied. A Monte Carlo uncertainty analysis is conducted and input-output correlations used to identify important parameter uncertainties. An approach is proposed for integrating these quantitative assessments of parameter uncertainty with broader, qualitative considerations to identify future research priorities

    Postexposure Prophylaxis against Anthrax: Evaluation of Various Treatment Regimens in Intranasally Infected Guinea Pigs

    No full text
    The efficiency of postexposure prophylaxis against Bacillus anthracis infection was tested in guinea pigs infected intranasally with either Vollum or strain ATCC 6605 spores (75 times the 50% lethal dose [LD(50)] and 87 times LD(50,) respectively). Starting 24 h postinfection, animals were treated three times per day for 14 days with ciprofloxacin, tetracycline, erythromycin, cefazolin, and trimethoprim-sulfamethoxazole (TMP-SMX). Administration of cefazolin and TMP-SMX failed to protect the animals, while ciprofloxacin, tetracycline, and erythromycin prevented death. Upon cessation of treatment all erythromycin-treated animals died; of the tetracycline-treated animals, two of eight infected with Vollum and one of nine infected with ATCC 6605 survived; and of the ciprofloxacin group injected with either 10 or 20 mg/kg of body weight, five of nine and five of five animals, respectively, survived. To test the added value of extending the treatment period, Vollum-infected (46 times the LD(50)) animals were treated for 30 days with ciprofloxacin or tetracycline, resulting in protection of eight of nine and nine of nine animals, respectively. Once treatment was discontinued, only four of eight and five of nine animals, respectively, survived. Following rechallenge (intramuscularly) of the survivors with 30 times the LD(50) of Vollum spores, all ciprofloxacin-treated animals were protected while none of the tetracycline-treated animals survived. In an attempt to confer protective immunity lasting beyond the termination of antibiotic administration, Vollum-infected animals were immunized with a protective antigen (PA)-based vaccine concurrently with treatment with either ciprofloxacin or tetracycline. The combined treatment protected eight of eight and nine of nine animals. Following cessation of antibiotic administration seven of eight and eight of eight animals survived, of which six of seven and eight of eight resisted rechallenge. These results indicate that a combined treatment of antibiotics together with a PA-based vaccine could provide long-term protection to prevent reoccurrence of anthrax disease

    Genetic Characterization and Immunogenicity of Coli Surface Antigen 4 from Enterotoxigenic Escherichia coli when It Is Expressed in a Shigella Live-Vector Strain

    No full text
    The genes that encode the enterotoxigenic Escherichia coli (ETEC) CS4 fimbriae, csaA, -B, -C, -E, and -D′, were isolated from strain E11881A. The csa operon encodes a 17-kDa major fimbrial subunit (CsaB), a 40-kDa tip-associated protein (CsaE), a 27-kDa chaperone-like protein (CsaA), a 97-kDa usher-like protein (CsaC), and a deleted regulatory protein (CsaD′). The predicted amino acid sequences of the CS4 proteins are highly homologous to structural and assembly proteins of other ETEC fimbriae, including CS1 and CS2, and to CFA/I in particular. The csaA, -B, -C, -E operon was cloned on a stabilized plasmid downstream from an osomotically regulated ompC promoter. pGA2-CS4 directs production of CS4 fimbriae in both E. coli DH5α and Shigella flexneri 2a vaccine strain CVD 1204, as detected by Western blot analysis and bacterial agglutination with anti-CS4 immune sera. Electron-microscopic examination of Shigella expressing CS4 confirmed the presence of fimbriae on the bacterial surface. Guinea pigs immunized with CVD 1204(pGA2-CS4) showed serum and mucosal antibody responses to both the Shigella vector and the ETEC fimbria CS4. Among the seven most prevalent fimbrial antigens of human ETEC, CS4 is the last to be cloned and sequenced. These findings pave the way for CS4 to be included in multivalent ETEC vaccines, including an attenuated Shigella live-vector-based ETEC vaccine

    Toxin-independent virulence of Bacillus anthracis in rabbits.

    Get PDF
    The accepted paradigm states that anthrax is both an invasive and toxinogenic disease and that the toxins play a major role in pathogenicity. In the guinea pig (GP) model we have previously shown that deletion of all three toxin components results in a relatively moderate attenuation in virulence, indicating that B. anthracis possesses an additional toxin-independent virulence mechanism. To characterize this toxin-independent mechanism in anthrax disease, we developed a new rabbit model by intravenous injection (IV) of B. anthracis encapsulated vegetative cells, artificially creating bacteremia. Using this model we were able to demonstrate that also in rabbits, B. anthracis mutants lacking the toxins are capable of killing the host within 24 hours. This virulent trait depends on the activity of AtxA in the presence of pXO2, as, in the absence of the toxin genes, deletion of either component abolishes virulence. Furthermore, this IV virulence depends mainly on AtxA rather than the whole pXO1. A similar pattern was shown in the GP model using subcutaneous (SC) administration of spores of the mutant strains, demonstrating the generality of the phenomenon. The virulent strains showed higher bacteremia levels and more efficient tissue dissemination; however our interpretation is that tissue dissemination per se is not the main determinant of virulence whose exact nature requires further elucidation
    corecore