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Benchmarking of cell type deconvolution pipelines
for transcriptomics data
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Pieter Mestdagh 1,2,5 & Katleen De Preter 1,2,5✉

Many computational methods have been developed to infer cell type proportions from bulk

transcriptomics data. However, an evaluation of the impact of data transformation, pre-

processing, marker selection, cell type composition and choice of methodology on the

deconvolution results is still lacking. Using five single-cell RNA-sequencing (scRNA-seq)

datasets, we generate pseudo-bulk mixtures to evaluate the combined impact of these fac-

tors. Both bulk deconvolution methodologies and those that use scRNA-seq data as reference

perform best when applied to data in linear scale and the choice of normalization has a

dramatic impact on some, but not all methods. Overall, methods that use scRNA-seq data

have comparable performance to the best performing bulk methods whereas semi-

supervised approaches show higher error values. Moreover, failure to include cell types in

the reference that are present in a mixture leads to substantially worse results, regardless

of the previous choices. Altogether, we evaluate the combined impact of factors affecting

the deconvolution task across different datasets and propose general guidelines to maximize

its performance.
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S ince bulk samples of heterogeneous mixtures only represent
averaged expression levels (rather than individual measures
for each gene across different cell types present in such

mixture), many relevant analyses such as differential gene
expression are typically confounded by differences in cell type
proportions. Moreover, understanding differences in cell type
composition in diseases, such as cancer will enable researchers to
identify discrete cell populations, such as specific cell types that
could be targeted therapeutically. For instance, active research on
the role of infiltrating lymphocytes and other immune cells in the
tumor microenvironment is currently ongoing1–3 (e.g., in the
context of immunotherapy) and it has already shown that
accounting for the tumor heterogeneity resulted in more sensitive
survival analyses and more accurate tumor subtype predictions4.
For these reasons, many methodologies to infer proportions of
individual cell types from bulk transcriptomics data have been
developed during the last two decades5, along with new methods
that use single-cell RNA-sequencing (scRNA-seq) data to infer
cell proportions in bulk RNA-sequenced samples. Collectively we
term these approaches cell deconvolution methods.

Several studies have addressed different factors affecting the
deconvolution results but only focused on one or two individual
aspects at a time. For instance, Zhong and Liu6 showed that
applying the logarithmic transformation to microarray data led to
a consistent under-estimation of cell-type specific expression
profiles. Hoffmann et al.7 showed that four different normal-
ization strategies had an impact on the estimation of cell type
proportions from microarray data and Newman et al.8 high-
lighted the importance of accounting for differences in normal-
ization procedures when comparing the results from
CIBERSORT9 and TIMER10. Furthermore, Vallania et al.11

observed highly concordant results across different deconvolution
methods in both blood and tissue samples, suggesting that the
reference matrix was more important than the methodology
being used.

Sturm et al.12 already investigated scenarios where reported cell
type proportions were higher than expected (spillover effect) or
different from zero when a cell type was not present in a mixture
(background prediction), possibly caused by related cell types
sharing similar signatures or marker genes not being sufficiently
cell-type specific. Moreover, they provided a guideline for method
selection depending on which cell type of interest needs to be
deconvolved. However, each method evaluated in Sturm et al. was
accompanied by its own reference signature for the different
immune cell types, implying that differences may be marker-
dependent and not method-dependent. Moreover, they did not
evaluate the effect of data transformation and normalization in
these analyses and only focused on immune cell types.

Here we provide a comprehensive and quantitative evaluation
of the combined impact of data transformation, scaling/normal-
ization, marker selection, cell type composition and choice of
methodology on the deconvolution results. We evaluate the
performance of 20 deconvolution methods aimed at computing
cell type proportions, including five recently developed methods
that use scRNA-seq data as reference. The performance is
assessed by means of Pearson correlation and root-mean-square
error (RMSE) values between the cell type proportions computed
by the different deconvolution methods (PC; computed propor-
tions; Fig. 1) and known compositions (PE; expected proportions)
of a thousand pseudo-bulk mixtures from each of five different
scRNA-seq datasets (three from human pancreas; one from
human kidney and one from human peripheral blood mono-
nuclear cells (PBMCs)). Furthermore, to evaluate the robustness
of our conclusions, different number of cells (cell pool sizes) are
used to build the pseudo-bulk mixtures. We observe that the most
relevant factors affecting the deconvolution results are: (i) the

data transformation, with linear transformation outperforming
the others, (ii) the reference matrix, which should include all cell
types being part of the mixtures, iii) a sensible marker selection
strategy for bulk deconvolution methods.

Results
Memory and time requirements. While simple logarithmic (log)
and square-root (sqrt) data transformations were performed
almost instantaneously in R (between 1 and 5 s; see Table 1 for
information about the number of cells subject to transformation
in each scRNA-seq dataset), the variance stabilization transfor-
mation (VST) performed using DESeq213 applied to the scRNA-
sequencing datasets had high memory requirements and took
several minutes to complete (time increasing linearly with respect
to the number of cells) (Supplementary Fig. 3). Importantly,
DESeq2 v1.26.0 (or above) reduced the running time from
quadratic (Supplementary Fig. 27 from Soneson et al.14) to linear
with respect of the number of cells.

We further evaluated the impact of different scaling and
normalization strategies as well as the choice of the deconvolution
method. Although the different scaling/normalization strategies
consistently have similar memory requirements, SCTransform15

and scran16 (two scRNA-seq specific normalization methods; the
former uses regularized negative binomial regression for normal-
ization (RNBR)) required up to seven minutes to complete, a 14
fold difference with the other methods, which finished under 30 s
(Supplementary Fig. 4).

The bulk deconvolution methods DSA17, ssFrobenius and
ssKL18 (all implemented as part of the CellMix19 R package) had
the highest RAM memory requirements, followed by DeconR-
NASeq20. Not surprisingly, the ordinary least squares (OLS21)
and non-negative least squares (nnls22) were the fastest, as they
have the simplest optimization problem to solve. Regarding the
methods that use scRNA-seq data as reference, Dampened
Weighted Least Squares (DWLS23), which includes an internal
marker selection step, resulted in the longest time consumption
(6–12 h to complete) whereas MuSiC24 and SCDC25 finished in
5–10 mins. Running time and memory usage for the different
deconvolution methods is summarized in Supplementary Fig. 5.

Impact of data transformation on deconvolution results. We
investigated the overall performance of each individual decon-
volution method across four different data transformations and
all normalization strategies (Fig. 2; Supplementary Fig. 6–7).
Maintaining the data in linear scale (linear transformation, in
gray) consistently showed the best results (lowest RMSE values)
whereas the logarithmic (in orange) and VST (in green; which
also performs an internal complex logarithmic transformation)
scale led to a poorer performance, with two to four-fold higher
median RMSE values. For a detailed explanation concerning
several bulk deconvolution methods and those using scRNA-seq
data as reference that could only be applied with a specific data
transformation or dataset, please see Supplementary Methods.

With the exception of EPIC26, DeconRNASeq20, and DSA17,
the choice of normalization strategy does not have a substantial
impact on the deconvolution results (evidenced by narrow
boxplots). These conclusions also hold when repeating the
analysis with different pseudo-bulk pool sizes in all datasets
tested (collapsing all scaling/normalization strategies and all bulk
deconvolution methods (Supplementary Fig. 8) or those using
scRNA-seq data as reference (Supplementary Fig. 9)). For these
reasons, all downstream analyses were performed on data in
linear scale. In terms of performance, the five best bulk
deconvolution methods (OLS, nnls, RLR, FARDEEP, and
CIBERSORT) and the three best methods that use scRNA-seq
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data as reference (DWLS, MuSiC, SCDC) achieved median RMSE
values lower than 0.05. Penalized regression approaches,
including lasso, ridge, elastic net regression, and DCQ
performed slightly worse than the ones described above (median
RMSE ~ 0.1).

Different combinations of normalization and deconvolution
methods. It is clear that different combinations of normalizations
and methodologies lead to substantial differences in performance
(Fig. 2 and Supplementary Fig. 6). Focusing on the data in linear
scale, we delved into the specific method and normalization
combinations evaluated. Among the bulk deconvolution methods,
least-squares (OLS, nnls), support-vector (CIBERSORT) and
robust regression approaches (RLR/FARDEEP) gave the best

results across different datasets and pseudo-bulk cell pool sizes
(median RMSE values < 0.05; Fig. 3a and Supplementary Figs. 10,
12). Regarding the choice of normalization/scaling strategy, col-
umn min-max and column z-score consistently led to the worst
performance. In all other situations, the choice of normalization/
scaling strategy had minor impact on the deconvolution results
for these methods. When considering the estimation error relative
to the magnitude of the expected cell type proportions, smaller
proportions consistently showed higher relative errors (see Sup-
plementary Figs. 20–23). Of note, quantile normalization always
resulted in sub-optimal results in any of the tested bulk decon-
volution methods (Fig. 3a, b).

As stated in its original publication, EPIC assumes transcripts
per million (TPM) normalized expression values as input. We
indeed observed that the choice of scaling/normalization has a big
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impact on the performance of EPIC, with TPM giving the best
results. The semi-supervised approaches ssKL and ssFrobenius
(using only sets of marker genes, in contrast to the supervised
counterparts which use a reference matrix with expression values
for the markers) showed the poorest performances with the
highest root-mean-square errors and lower Pearson correlation
values (Fig. 3a and Supplementary Fig. 10).

For deconvolution methods using scRNA-seq data as reference
(Fig. 3c and Supplementary Fig. 11), we evaluated each
combination of normalization strategies for both the pseudo-
bulk mixtures (scalingT, y-axis) and the single-cell expression
matrices (scalingC, x-axis). DWLS, MuSiC and SCDC consistently
showed the highest performance (comparable to the top-
performers from the bulk methods, see also Fig. 2) across the
different choices of normalization strategy (with the exception of
row-normalization, column min-max, and TPM). While these
results are consistent for deconvSeq, MuSiC, DWLS, and SDCD
regardless of the dataset and pseudo-bulk cell pool size, we
observed a substantial performance improvement in BisqueRNA
when the pool size increased or when the dataset contained
scRNA-seq from more individuals (E-MTAB-5061 and
GSE81547, with n= 6 and 8, respectively) (Supplementary Figs. 7,
11). Note that it was not feasible to evaluate all combinations
(empty locations in the grid), see “Incompatible data transforma-
tions or normalizations with several deconvolution methods”
(Supplementary Notes) for a detailed explanation.

Impact of the markers used in bulk deconvolution methods.
Based on the previous results, we wanted to evaluate whether
different marker selection strategies had an impact on the
deconvolution results starting from bulk expression data in linear
scale. To that end, we assessed the impact of eight different
marker selection strategies (see “Methods”) on the deconvolution
results using bulk deconvolution methods (Fig. 4 and Supple-
mentary Fig. 13). This analysis was not done for the methods that
use scRNA-seq data as reference because they do not require
marker genes to be known prior to performing the deconvolution.

The use of all possible markers (all strategy) showed the best
performance overall, followed by positive fold-change markers
(pos_fc; negative fold-change markers are those with small
expression values in the cell type of interest and high values in
all the others) or those on the top 50% of average expression
values (top_50p_AveExpr) or log fold-changes (top_50p_logFC).
As expected, the use of random sets of 5 markers per cell type
(random5; negative control in our setting) was consistently the
worst choice across all datasets regardless of the deconvolution
method. Using the bottom 50% of the markers per cell type based
on average expression levels (bottom_50p_AveExpr) or log fold
changes (bottom_50p_logFC) also led to sub-optimal results.
Specifically in the Baron and PBMC datasets, the use of the top 2
markers per cell type (top_n2) led to a) optimal results when used
with DSA; b) similar results as using the bottom_50p_AveExpr or
bottom_50p_logFC with ordinary linear regression strategies; c)
worse results than random when used with penalized regression
strategies (lasso, ridge, elastic net, DCQ) and CIBERSORT.

For all markers across each dataset, we took a closer look at the
fold-change distribution for both the cell type where they were
initially found as marker (highest fold change) and the fold-
change differences among all other cell types. Using the threshold
values used to select a gene as marker, we computed the
percentage of those that could also be considered markers for a
secondary cell type (values between parentheses in the boxplots
below). For the five datasets included in the benchmark, 7–38% of
the markers were not specific (exclusive) for only one cell type
(see Supplementary Fig. 2).T
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Effect of removing cell types from the reference matrix. Based
on the results from all the analyses thus far, we decided to eval-
uate the impact of removing cell types with the data in linear scale
and using all available markers (all marker selection strategy).
Furthermore, we selected nnls and CIBERSORT as representative
top-performing bulk deconvolution methods and DWLS and
MuSiC as top-performing deconvolution methods that use
scRNA-seq data as reference. To also be able to evaluate
the impact of the normalization strategy, we included a repre-
sentative sample of normalization strategies that result in small
RMSE and high Pearson correlation values (see Fig. 3 and Sup-
plementary Figs. 10–12): column, median ratios, none, TMM and
TPM for nnls and CIBERSORT; column, scater, scran, none,
TMM and TPM for DWLS and MuSiC.

We assessed the impact of removing a specific cell type by
comparing the absolute RMSE values between the ideal scenario
where the reference matrix contains all the cell types present in
the pseudo-bulk mixtures (leftmost column in Figs. 5a, b and 6a,
b (with gray label: none); Supplementary Figs. 16, 17) and the
RMSE values obtained after removing one cell type at a time from
the reference (all other gray labels).

We then focussed on those cases where the median absolute
RMSE values between the results using the complete reference
matrix (depicted as none in Figs. 5a, b and 6a, b) and all other
scenarios where a cell type was removed, increased at least 2-fold.
In the PBMC dataset (Fig. 5a, b), removing CD19+, CD34+,
CD14+ or NK cells had an impact on the computed T-cell
proportions (between a three and six-fold increase in the median
absolute RMSE values, both in bulk deconvolution methods and
those using scRNA-seq data as reference). The GSE81547 dataset

(Fig. 6a, b) shows that removing acinar cells has a dramatic
impact in all other cell type proportions. Supplementary Figs. 14
and 15 showed the results for Baron and E-MTAB-5061 datasets,
respectively. None of the method and normalization combina-
tions was able to provide accurate cell type proportion estimates
when the reference was missing a cell type.

To investigate whether the proportion of the omitted cell type
was re-distributed equally among all remaining cell types or only
among those that are transcriptionally most similar, we computed
pairwise Pearson correlation values between the expression
profiles of the different cell types (Figs. 5c, d and 6c, d). Figure 5c,
d shows that CD14+ monocytes were mostly correlated with
dendritic cells (Pearson= 0.85 when computing pairwise correla-
tions on the reference matrix containing only marker genes and
0.94 when using the complete expression profiles from all cell
types, respectively) and Fig. 5a, b shows that, when removing
CD14+ monocytes, the highest RMSE value was found in
dendritic cells. Figure 6c, d shows that acinar cells are not
correlated with any other cell type (Pearson values close to zero
with all other cell types) and Fig. 6a, b shows that, when removing
acinar cells, all cell type proportions estimates have higher RMSE
values compared to the case where no cell type is missing (none,
leftmost panel).

For the Baron dataset (Supplementary Figs. 14 and 18): the
removal of ductal cells (highest correlation with quiescent stellate
and endothelial cells) led to highest RMSE values for both
quiescent stellate and endothelial cells, while the removal of
endothelial cells (mostly correlated with quiescent stellate, beta
and ductal cells) led to the highest RMSE values for quiescent,
ductal and beta cells. For the E-MTAB-5061 dataset
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(Supplementary Figs. 15 and 19): no cell type is correlated to one
another and removing any cell type from the reference matrix led
to distorted proportions for all other cell types.

Deconvolution of real bulk heterogeneous samples. In contrast
to the thousands of artificial pseudo-bulk mixtures across five
datasets used in the previous sections, we used nine human bulk
PBMCs samples from Finotello et al.27 for which cell type pro-
portions were measured by flow cytometry. We considered these
proportions as the gold standard against which both bulk
deconvolution methods and those able to use scRNA-seq data as
reference could be evaluated. To note, it was not possible to
evaluate MuSiC and SCDC because the 10x scRNA-seq data used
as reference came from only one individual. Hence, only DWLS,
deconvSeq, and BisqueRNA were tested. See “Computational

framework for the evaluation of deconvolution pipelines with real
RNA-seq data” (“Methods”) and Table 1 for more details.

Regarding bulk deconvolution methods: robust regression
methods (RLR, FARDEEP) and support vector regression
(CIBERSORT) consistently showed the smallest RMSE and
highest Pearson correlation values (Fig. 7a). Similarly, DWLS
performed best among the deconvolution methods that use
scRNA-seq data as input (Fig. 7b).

Discussion
Using both Pearson correlation and RMSE values as measures of
the deconvolution performance, we comprehensively evaluated
the combined impact of four data transformations, sixteen scal-
ing/normalization strategies, eight marker selection approaches
and twenty different deconvolution methodologies on five dif-
ferent scRNA-seq datasets. These datasets encompass three
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different biological sample types (human pancreas, kidney, and
peripheral blood mononuclear cells) and four different sequen-
cing protocols (CEL-Seq, Smart-Seq 2, Microwell-Seq, and
GemCode Single-Cell 3′). Additionally, we assessed the impact of
using different number of cells when making the pseudo-bulk
mixtures and the impact of removing cell types from the reference
matrix that were actually present in the mixtures.

Even though the five scRNA-seq datasets used throughout this
manuscript encompass different sequencing protocols that led to
hundred-fold differences in the number of reads sequenced per
cell (Table 1), our findings were consistent regardless of the da-
taset being evaluated or the number of cells used to make the
pseudo-bulk mixtures (Supplementary Figs. 6–12). Given the
limited number of cells available per dataset and the scarcity of
publicly available datasets with similar health status, sequencing
platform, and library preparation protocol to validate our results,
some cells were used in more than one mixture and each dataset
was split into training and testing (50%:50%), meaning that cells
from one individual were present both in training and test sets
but a given cell was only present in one split. Nevertheless, while
the different datasets (except PBMCs) contain cells from more
than one individual (=inherent inter-sample variability), we

observed meaningful differences between cell types rather than by
individual (Supplementary Fig. 24). Additionally, we generated
scenarios where cells from a given individual were used only in
one split (training or test) by assigning half of the samples to each
split prior to selecting the cells based on the cell type. These led to
slightly higher RMSE and lower Pearson correlation values
compared to those where cells from one individual were present
in both splits, but the same conclusions hold true in both analyses
(Supplementary Figs. 25–26).

Both cell type proportions on their own (e.g., at baseline level,
before any treatment has started) and changes in cell type com-
position upon drug treatment or a viral infection are relevant and
can be assessed through computational deconvolution. For
instance, patients with high levels of tumor-infiltrating lympho-
cytes have been found to respond better to immune checkpoint
inhibitors (immunotherapy)28 and changes in diverse immune
cell types were found in mice lungs during the course of influenza
infection29. In principle, the performance of a computational
deconvolution framework should be independent of the experi-
mental set up where it is applied. However, we acknowledge that
the data included in our benchmark did not directly evaluate the
latter scenario.
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The logarithmic transformation is routinely included as a part
of the pre-processing of omics data in the context of differential
gene expression analysis30,31, but Zhong and Liu6 showed that it
led to worse results than performing computational deconvolu-
tion in the linear (un-transformed) scale. The use of the expres-
sion data in its linear form is an important difference with respect
to classical differential gene expression analyses, where statistical
tests assume underlying normal distributions, typically achieved
by the logarithmic transformation32. Silverman et al.33 showed
that using log counts per million with sparse data strongly dis-
torts the difference between zero and non-zero values and
Townes et al.34 showed the same when log-normalizing UMIs.
Tsoucas et al.23 showed that when the data was kept in the linear
scale, all combinations of three deconvolution methods (DWLS,
QP, or SVR) and three normalization approaches (LogNormalize
from Seurat, Scran or SCnorm) led to a good performance, which
was not the case when the data was log-transformed. Here, we
assessed the impact of the log transformation on both full-length
and tag-based scRNA-seq quantification methods and confirmed
that the computational deconvolution should be performed on
linear scale to achieve the best performance.

Data scaling or normalization is a key pre-processing step
when analysing gene expression data. Data scaling approaches
transform the data into bounded intervals such as [0, 1] or [−1,
+1]. While being relatively easy and fast to compute, scaling is
sensitive to extreme values. Therefore, other strategies that aim to
change the observations so that they follow a normal distribution
(= normalization) may be preferred. Importantly, these normal-
izations typically do not result in bounded intervals. In the
context of transcriptomics, normalization is needed to only keep
true differences in expression. Normalizations, such as TPM aim
at removing differences in sequencing depth among the samples.
An in-depth overview of normalization methods and their
underlying assumptions is presented in Evans et al.35. Vallania
et al.11 assessed the impact of standardizing both the bulk and
reference expression profiles into z-scores prior to deconvolution,
which is performed by CIBERSORT but not in other methods.
They observed high pairwise correlations between the estimated
cell type proportions with and without standardizing the data,
suggesting a neglectable effect. However, a high Pearson corre-
lation value is not always synonym of a good performance. As
already pointed out by Hao et al.36, high Pearson correlation
values can arise when the proportion estimations are accurate

(low RMSE values) but also when the proportions differ sub-
stantially (high RMSE values), making the correlation metric
alone not sufficient to assess the deconvolution performance.
Both for bulk deconvolution methods and those that use scRNA-
seq data as reference, our analyses show that the normalization
strategy had little impact (except for EPIC, DeconRNASeq, and
DSA bulk methods). Of note, quantile normalization (QN), an
approach used by default in several deconvolution methods (e.g.,
FARDEEP, CIBERSORT), consistently showed sub-optimal per-
formance regardless of the chosen method.

In general, the use of all data at hand (i.e., in supervised
strategies) leads to better results than unsupervised or semi-
supervised approaches. However, in other contexts different from
computational deconvolution (e.g., automatic cell identifica-
tion37), it has been shown that incorporating prior knowledge
into the models does not improve the performance. Furthermore,
there are situations where cell-type specific expression profiles are
not readily available and supervised methodologies cannot be
used. For these reasons, we included ssFrobenius and ssKL in our
benchmarking, two semi-supervised non-negative matrix factor-
ization methods to perform bulk gene expression deconvolution.
They led to higher RMSE and lower Pearson correlation values
than most supervised methodologies (except DCQ and dtangle;
Fig. 2 and Supplementary Fig. 6), highlighting the positive impact
of incorporating prior knowledge (in the form of cell-type specific
expression profiles) in the field of computational deconvolution.
In any case, results from supervised and semi-supervised meth-
odologies should be interpreted separately.

Schelker et al.38 and Racle et al.26 showed that the origin of the
expression profiles had also a dramatic impact on the results,
revealing the need of using appropriate cell types coming from
niches similar to the bulk being investigated. Hunt et al.39 showed
that a good deconvolution performance was achieved if the markers
being used were predominantly expressed in only one cell type and
with the expression in other cell types being in the bottom 25%.
Monaco et al.40 showed similar conclusions when the reference
matrix was pre-filtered by removing markers with small log fold
change between the first and second cell types with highest
expression. In our analyses, markers were selected based on the fold
change with respect to the cell type with the second-highest
expression. Therefore, the pre-filtering proposed by Hunt et al. and
Monaco et al. was already implicitly done. Furthermore, when sub-
setting the markers based on their average gene expression or fold
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Fig. 7 Deconvolution performance on nine human PBMC bulk samples. With a bulk deconvolution methods; b deconvolution methods using scRNA-seq
as reference.
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changes, those in the top fifty percent led to smaller RMSEs com-
pared to those in the bottom fifty percent (Fig. 4).

Wang et al.24 explored the effect of removing one immune cell
type at a time from the reference matrix on the estimation
accuracy using artificial bulk expression of six pancreatic cell
types (alpha, beta, delta, gamma, acinar, and ductal) and
removing one cell type from the single-cell expression dataset.
They observed that, when a cell type was missing in the reference
matrix, MuSiC, NNLS, and CIBERSORT did not produce accu-
rate proportions for the remaining cell types. Gong and Szusta-
kowski20 also investigated this issue by performing a first
deconvolution using DeconRNASeq, then removing the least
abundant cell population from the reference/basis matrix, and
finally repeating the deconvolution with the new matrix. They
observed an uneven redistribution of the signal and observed that
some initial proportions became smaller. Moreover, Schelker
et al.38 investigated this phenomenon by looking at the correla-
tion coefficient between the results obtained with the complete
reference matrix and the results removing one cell type at a time.

We performed similar analyses for four deconvolution meth-
ods (two bulk and two using scRNA-seq data as reference) and
eleven normalization strategies (five for bulk, six for single-cell)
on three single-cell human pancreas and one PBMC dataset,
keeping the data in linear scale. We observed both cases where the
choice of normalization strategy had no impact and other cases
where it did. Interestingly, the removal of specific cell types did
not affect all other cell types equally. Both bulk deconvolution
methods and those using scRNA-seq data as reference showed
similar trends when removing specific cell types. However, there
were some discrepancies in the RMSE values (e.g., removal of beta
cells had a substantial impact on the proportions of delta cells but
CIBERSORT showed three times higher RMSE values compared
to either nnls, MuSiC or DWLS (Fig. 6a, b and Supplementary
Fig. 17)). This may be explained by the fact that for bulk
deconvolution methods, we removed both the cell type expression
profile and its marker genes from the reference matrix whereas
for those where scRNA-seq data was used as reference, only the
cells from the specific cell type were excluded, without applying
extra filtering on the genes (MuSiC, SCDC) or because a different
signature was internally built (DWLS).

Schelker et al. found that B cell and dendritic cell proportions
were affected by removing macrophages or monocytes whereas
NK cell proportions were affected by removing T cells. Sturm
et al., also reported the impact of removing CD8+ T cells on NK
cell proportions. Our results on the PBMC dataset agree with
those from Schelker et al. and Sturm et al. but also include novel
insights: removing CD19+ B-cells, CD34+, CD14+ monocytes
or NK cells had an impact on the computed T-cell proportions
and removing CD19+ B-cells, CD56+ NK or T cells had an
impact on CD34+ cell proportions.

Furthermore, we found a direct association between the corre-
lation values among the cell types present in the mixtures and the
effect of removing a cell type from the reference matrices. Specifi-
cally, we hypothesize that: (a) removing a cell type that is barely or
completely uncorrelated (Pearson < 0.2) to all other cell types
remaining in the reference matrix has a dramatic impact in the cell
type proportions of all other cell types; (b) removing a cell type that
was strongly positively correlated (Pearson > 0.6) with one or more
cell types still present in the reference matrix leads to distorted
estimates for the most correlated cell type(s). The correlation
between different cell types is a direct manifestation of their relat-
edness in a cell-type ontology/hierarchy: the closer the cell types in
the hierarchy, the higher the correlation between their expression
profiles. The cell-type relationship based on the hierarchy is a good
qualitative predictor of the population, which will be most affected
when removing a cell type from the reference matrix.

EPIC26 shows a first attempt in alleviating this problem by
considering an unknown cell type present in the mixture.
Nevertheless, this is currently restricted to cancer, using markers
of non-malignant cells that are not expressed in cancer cells.

In conclusion, when performing a deconvolution task, we
advise users to: (a) keep their input data in linear scale; (b) select
any of the scaling/normalization approaches described here with
exception of row scaling, column min-max, column z-score or
quantile normalization; (c) choose a regression-based bulk
deconvolution method (e.g., RLR, CIBERSORT or FARDEEP)
and also perform the same task in parallel with DWLS, MuSiC or
SCDC if scRNA-seq data is available; (d) use a stringent marker
selection strategy that focuses on differences between the first and
second cell types with highest expression values; (e) use a com-
prehensive reference matrix that include all relevant cell types
present in the mixtures.

Finally, as more scRNA-seq datasets become available in the
near future, its aggregation (while carefully removing batch
effects) will increase the robustness of the reference matrices
being used in the deconvolution and will fuel the development of
methodologies similar to SCDC, which allows direct usage of
more than one scRNA-seq dataset at a time.

Methods
Dataset selection and quality control. Five different datasets coming from dif-
ferent single-cell isolation techniques (FACS and droplet-based microfluidics) and
encompassing both full-length (Smart-Seq2) and tag-based library preparation
protocols (3′-end with UMIs) were used throughout this article (see Table 1). After
removing all genes (rows) full of zeroes or with zero variance, those cells (columns)
with library size, mitochondrial content or ribosomal content further than three
median absolute deviations (MADs) away were discarded. Next, only genes with at
least 5% of all cells (regardless of the cell type) with a UMI or read count greater
than 1 were kept.

Finally, we retained cell types with at least 50 cells passing the quality control
step and, by setting a fixed seed and taking into account the number of cells across
the different cell types (pooling different individuals when possible; thereby
including inherent inter-sample variability), each dataset was further split into
balanced training and testing datasets (50%:50% split) with a similar distribution of
cells per cell type.

Regarding E-MTAB-5061: cells with not_applicable, unclassified and co-
expression_cell labels were excluded and only cells coming from six healthy patients
(non-diabetic) were kept.

After quality control, we made two-dimensional t-SNE plots for each dataset.
When adding colored labels both by cell type and donor (Supplementary Fig. 24),
the plots showed consistent clustering by cell type rather than by donor, indicating
an absence of batch effects.

Generation of reference matrices for the deconvolution. Using the training
splits from the previous section, the mean count across all individual cells from
each cell type was computed for each gene, constituting the original (un-trans-
formed and un-normalized) reference matrix (C in equation (1) from section
“Computational deconvolution: formulation and methodologies”) and were used as
input for the bulk deconvolution methods described in that section.

For the deconvolution methods that use scRNA-seq data as reference and for
the marker selection step, the training subsets were used in their original single-cell
format, whereas a mean gene expression collapsing step (=mean expression value
across all cells of the same cell type) was required to generate the reference matrices
used in the bulk deconvolution methods.

Cell-type specific marker selection. TMM normalization (edgeR package41) was
applied to the original (linear) scRNA-seq expression datasets and limma-voom42

was used to find out marker genes. Only genes with positive count values in at least
30% of the cells of at least one group were retained. Among the retained ones, those
with absolute fold changes greater or equal to 2 with respect to the second cell type
with highest expression and BH adj p-value < 0.05 were kept as markers in all three
pancreatic datasets. Since the kidney and PBMC datasets contained more closely
related cell types, the fold-change threshold was lowered to 1.8 and 1.5,
respectively.

Once the set of markers was retrieved, the following approaches were evaluated:
(i) all: use of all markers found following the procedure described in the previous
paragraph; (ii) pos_fc: using only markers with positive fold-change (= over-
expressed in cell type of interest; negative fold-change markers are those with small
expression values in the cell type of interest and high values in all the others); (iii)
top_n2: using the top 2 genes per cell type with the highest log fold-change; (iv)

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-19015-1 ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:5650 | https://doi.org/10.1038/s41467-020-19015-1 | www.nature.com/naturecommunications 11

www.nature.com/naturecommunications
www.nature.com/naturecommunications


top_50p_logFC: top 50% of markers (per CT) based on log fold-change; (v)
bottom_50p_logFC: bottom 50% of markers based on log fold-change; (vi)
top_50p_AveExpr: top 50% of markers based on average gene expression (baseline
expression); vii) bottom_50p_AveExpr: low 50% based on average gene expression;
(viii) random5: for each cell type present in the reference, five genes that passed
quality control and filtering were randomly selected as markers.

Generation of thousands of artificial pseudo-bulk mixtures. Using the testing
datasets from the quality control step, we generated matrices containing 1000 pseudo-
bulk mixtures (matrix T in equation (1) from “Computational deconvolution: for-
mulation and methodologies”) by adding up count values from the randomly selected
individual cells. The minimum number of cells used to create the pseudo-bulk
mixtures (pool size) for each of the five datasets was 100 and the maximum possible
number was determined by the second most abundant cell type (rounded down to the
closest hundred, to avoid non-integer numbers of cells), resulting in n= 100, 700, and
1200 for Baron; n= 100, 300, and 400 for PBMCs; n= 100 and 200 for GSE81547;
n= 100 and 200 for the kidney dataset and n= 100 for E-MTAB-5061.

For the human pancreas and PBMC datasets, each (feasible) pseudo-bulk
mixture was created by randomly (uniformly) selecting the number of cell types to
be present (between 2 and 5) and their identities, followed by choosing the cell type
proportion assigned to each cell type (enforcing a sum-to-one constraint) among
all possible proportions between 0.05 and 1, in increasing intervals of 0.05. For the
kidney data, the number of cell types present was randomly (uniformly) selected
between 2 and 8 (eight being the maximum number of cell types possible), followed
by selecting the cell type proportion assigned to each cell type (enforcing a sum-to-
one constraint) among all possible proportions between 0.01 and 0.99. Finally, once
the number of cells to be picked up from specific cell types was determined, the
cells were randomly selected without replacement (= a given cell can only be
present once in a mixture).

Evaluation of deconvolution pipelines with real RNA-seq data. We downloaded
and processed raw poly(A) RNA-seq (single-end) data of nine human (bulk)
PBMCs samples from Finotello et al.27 for which cell type proportions were
measured by flow cytometry (assumed gold standard; see Supplementary Table 2

and “Processing poly(A) RNA-seq of nine human bulk PBMCs samples” in Sup-
plementary Notes). Furthermore, we used scRNA-seq data from PBMCs (10×
Genomics; see Table 1) and bulk RNA-seq for B cells, monocytes, myeloid den-
dritic cells, natural killer and T cells (see Supplementary Table 1).

Importantly, we acknowledge two limitations in this set-up: (i) the nine PBMCs
include a measurement for neutrophils (2.45%–5.05%) while such cell type was not
present in the 10x scRNA-seq data; (ii) The 10× scRNA-seq data contained CD34+
cells whereas the nine PBMCs did not include information for such cell type.

Therefore, to establish an unbiased assessment for both bulk deconvolution
methods and those that use scRNA-seq data as reference, we excluded CD34+ cells
from the 10× scRNA-seq data and did not use the bulk RNA-seq data for
neutrophils in the reference matrix (see Table 2). Of note, flow cytometry
proportions for T cells were computed as the sum of proportions of three different
sub-populations (Tregs, CD8+ and CD4+).

Data transformation and normalization. The next step is applying four different
data transformations to: (i) the un-transformed and un-normalized reference
matrix C; (ii) the un-transformed and un-normalized single-cell training splits and
(iii) the un-transformed and un-normalized matrix T containing the 1000 pseudo-
bulk mixtures.

Since count data from both bulk and scRNA-seq show the phenomenon of over-
dispersion41,43, the following data transformations were chosen: (a) leave the data in
the original (linear) scale; (b) use the natural logarithmic transformation (with the
log1p function in R44); (c) use the square-root transformation; (d) variance-stabilizing
transformation (VST). The second and third are simple and commonly used
transformations aiming at reducing the skewness in the data due to the presence of
extreme values31 and stabilizing the variance of Poisson-distributed counts45,
respectively. VST (using the varianceStabilizingTransformation function from
DESeq2) removes the dependence of the variance on the mean, especially important
for low count values, while simultaneously normalizing with respect to library size13.

Each transformed output file was further scaled/normalized with the
approaches listed on Table 3. The mathematical implementation can be found at
the original publications (Ref column) and in our GitHub repository. Due to the
sparsity of the scRNA-seq matrices (most genes with zero counts), the UQ

Table 2 Evaluation of deconvolution pipelines with real mixtures.

Heterogeneous input Reference matrix Marker information Expected
proportions

Bulk deconvolution
methodologies

9 human bulk PBMCs Bulk RNA-seq of monocytes, B cells,
natural killer, dendritic cells and T cells
(SRA accession from Supplementary
Table 1)

Markers for monocytes, B cells,
natural killer, dendritic cells and
T cells obtained from 10x
scRNA-seq data

Flow cytometry
measurements

Deconvolution methods
using scRNA-seq as
reference

9 human bulk PBMCs 10× scRNA-seq data excluding CD34
+ cells

No prior information Flow cytometry
measurements

Scenarios used to assess the performance of the different deconvolution methods using bulk RNA-seq from nine PBMCs samples.

Table 3 Detailed description of different scaling/normalization approaches used in the benchmarking.

Scaling/normalization method Single-cell
specific

Output containing
negative values

Output bounded in [0,1]
interval

Reference

Column-wise (= Total count or library size
normalization)

No No Yes 59

Column min-max No No Yes 60

Column z-score No Yes No 61

Row-wise No No Yes 62

Global min-max No No Yes 60

Global z-score No Yes No 61

Quantile normalization (QN) No No No 63

Upper quartile (UQ) No No No 64

Transcripts per million (TPM) No No No 65

Trimmed mean of M-values (TMM) No No No 66

LogNormalize No No No 67

Median of ratios No No No 13

Scran Yes No No 16

Scater Yes No No 68

Linnorm Yes No No 69

SCTransform (RNBR) Yes No No 15
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normalization failed (all normalization factors were infinite or NA values) and thus
was eventually not included in downstream analyses. TMM includes an additional
step that uses the normalization factors to obtain normalized counts per million.
LogNormalize and Linnorm include an additional exponentiation scale after
normalization in order to transform the output data back into linear scale. Median
of ratios can only be applied to integer counts in linear scale.

Computational deconvolution: formulation and methodologies. The deconvo-
lution problem can be formulated as:

T ¼ C � P ð1Þ
(see Avila Cobos et al. 5 together with “Approximation of bulk transcriptomes as
linear mixtures” and “Small impact of cell cycle in the deconvolution results” in
Supplementary Notes), where T=measured expression values from bulk hetero-
geneous samples; C= cell type-specific expression values and P= cell-type pro-
portions. Specifically, T represents the 1000 pseudo-bulk mixtures from
“Generation of thousands of artificial pseudo-bulk mixtures” and C is the reference
matrix from “Cell-type specific marker selection and generation of reference
matrices for the deconvolution”. In the context of this article, the goal is to obtain P
using T and C as input.

Fifteen bulk deconvolution methods a have been evaluated, including two
traditional (ordinary least squares (OLS21) and non-negative least squares
(NNLS22)) and one weighted least squares method (EPIC26); two robust regression
(FARDEEP46, RLR47), one support-vector regression (CIBERSORT9) and four
penalized regression (ridge, lasso, elastic net48 and Digital Cell Quantifier (DCQ29))
approaches; one quadratic programming (DeconRNASeq20), one method that
models the problem in logarithmic scale (dtangle39) and three methods included in
the CellMix R package:19 Digital Sorting Algorithm (DSA17) and two semi-
supervised non-negative matrix factorization methods (ssKL and ssFrobenius18).
Furthermore, five deconvolution methods that use scRNA-seq as reference have
been evaluated: deconvSeq49, MuSiC24, DWLS23, Bisque50 and SCDC25. We refer
the reader the original publications and our Github repository (github.com/
favilaco/deconv_benchmark) for details about their implementation.

Measures of deconvolution performance. Changes in memory were assessed
with the mem_change function from the pryr package51 and the elapsed time was
measured with the proc.time function (both functions executed in R v.3.6.0).

We computed both the Pearson correlation values and the root-mean-square
error (RMSE) between cell type proportions from thousands of pseudo-bulk
mixtures with known composition and the output from different deconvolution
methods for each combination of data transformation, scaling/normalization
choice, and deconvolution method. Higher Pearson correlation and low RMSE
values correspond to a better deconvolution performance.

Evaluation of missing cell types in the reference matrix C. For every cell type
removed, the deconvolution was applied only to mixtures where the missing cell
type was originally present. For bulk deconvolution methods, the marker genes of
the cell type that was removed from the reference were also excluded (methods
using scRNA-seq data as reference did not require a priori marker information).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The five publicly available datasets used in this article can be found at their respective
sources: Baron: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE84133
(Specifically: GSM2230757, GSM2230758, GSM2230759 and GSM2230760 for human
pancreatic islands). GSE81547, E-MTAB-5061, PBMCs: https://support.10xgenomics.
com/single-cell-gene-expression/datasets/1.1.0/fresh_68k_pbmc_donor_a, kidney.HCL:
https://figshare.com/articles/HCL_DGE_Data/7235471, see Table 1 for more details.

Code availability
Source code can be found at https://github.com/favilaco/deconv_benchmark.
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