277 research outputs found

    Detection of single nucleotide and copy number variants in the Fabry disease-associated GLA gene using nanopore sequencing

    Full text link
    More than 900 variants have been described in the GLA gene. Some intronic variants and copy number variants in GLA can cause Fabry disease but will not be detected by classical Sanger sequence. We aimed to design and validate a method for sequencing the GLA gene using long-read Oxford Nanopore sequencing technology. Twelve Fabry patients were blindly analyzed, both by conventional Sanger sequence and by long-read sequencing of a 13 kb PCR amplicon. We used minimap2 to align the long-read data and Nanopolish and Sniffles to call variants. All the variants detected by Sanger (including a deep intronic variant) were also detected by long-read sequencing. One patient had a deletion that was not detected by Sanger sequencing but was detected by the new technology. Our long-read sequencing-based method was able to detect missense variants and an exonic deletion, with the added advantage of intronic analysis. It can be used as an efficient and cost-effective tool for screening and diagnosing Fabry disease

    Diagnostic Yield and Benefits of Whole Exome Sequencing in CAKUT Patients Diagnosed in the First Thousand Days of Life

    Get PDF
    Infancy; Reverse phenotyping; Whole exome sequencingInfancia; Fenotipado inverso; Secuenciación del exoma completoInfància; Fenotipat invers; Seqüenciació de l'exoma completIntroduction Congenital anomalies of the kidney and urinary tract (CAKUT) are the predominant cause of chronic kidney disease (CKD) and the need for kidney replacement therapy (KRT) in children. Although more than 60 genes are known to cause CAKUT if mutated, genetic etiology is detected, on average, in only 16% of unselected CAKUT cases, making genetic testing unproductive. Methods Whole exome sequencing (WES) was performed in 100 patients with CAKUT diagnosed in the first 1000 days of life with CKD stages 1 to 5D/T. Variants in 58 established CAKUT-associated genes were extracted, classified according to the American College of Medical Genetics and Genomics guidelines, and their translational value was assessed. Results In 25% of these mostly sporadic patients with CAKUT, a rare likely pathogenic or pathogenic variant was identified in 1 or 2 of 15 CAKUT-associated genes, including GATA3, HNF1B, LIFR, PAX2, SALL1, and TBC1D1. Of the 27 variants detected, 52% were loss-of-function and 18.5% de novo variants. The diagnostic yield was significantly higher in patients requiring KRT before 3 years of age (43%, odds ratio 2.95) and in patients with extrarenal features (41%, odds ratio 3.5) compared with patients lacking these criteria. Considering that all affected genes were previously associated with extrarenal complications, including treatable conditions, such as diabetes, hyperuricemia, hypomagnesemia, and hypoparathyroidism, the genetic diagnosis allowed preventive measures and/or early treatment in 25% of patients. Conclusion WES offers significant advantages for the diagnosis and management of patients with CAKUT diagnosed before 3 years of age, especially in patients who require KRT or have extrarenal anomalies.This work was supported by grants from the Else Kröner-Fresenius-Stiftung (2018_Kolleg.12, Clinician Scientist Program TITUS at Hannover Medical School to LW) and the Deutsche Forschungsgemeinschaft (MA 9606/1-1 to HM, and KO 5614/2-1 to AC and RGW)

    Two Di-Leucine Motifs Regulate Trafficking of Mucolipin-1 to Lysosomes

    Get PDF
    Mutations in the mucolipin-1 gene have been linked to mucolipidosis type IV, a lysosomal storage disorder characterized by severe neurological and ophthalmologic abnormalities. Mucolipin-1 is a membrane protein containing six putative transmembrane domains with both its N- and C-termini localized facing the cytosol. To gain information on the sorting motifs that mediate the trafficking of this protein to lysosomes, we have generated chimeras in which the N- and C- terminal tail portions of mucolipin-1 were fused to a reporter gene. In this article, we report the identification of two separate di-leucine-type motifs that co-operate to regulate the transport of mucolipin-1 to lysosomes. One di-leucine motif is positioned at the N-terminal cytosolic tail and mediates direct transport to lysosomes, whereas the other di-leucine motif is found at the C-terminal tail and functions as an adaptor protein 2-dependent internalization motif. We have also found that the C-terminal tail of mucolipin-1 is palmitoylated and that this modification might regulate the efficiency of endocytosis. Finally, the mutagenesis of both di-leucine motifs abrogated lysosomal accumulation and resulted in cell-surface redistribution of mucolipin-1. Taken together, these results reveal novel information regarding the motifs that regulate mucolipin-1 trafficking and suggest a role for palmitoylation in protein sorting

    Enzyme replacement reverses abnormal cerebrovascular responses in Fabry disease

    Get PDF
    BACKGROUND: Fabry disease is a lysosomal X-linked enzyme deficiency of α-galactosidase A associated with an increased mortality and morbidity due to renal failure, cardiac disease and early onset stroke. METHODS: We examined the functional blood flow response of the brain after visual stimulation (reversing checkerboard pattern), and cerebral vasoreactivity following acetazolamide (15 mg/kg) with [(15)O]H(2)O and positron emission tomography (PET) in Fabry disease. Twenty-six hemizygous patients (age range 19–47 years) were enrolled in a randomized double-blind placebo-controlled 6-month trial of enzyme replacement therapy administered by intravenous infusion every two weeks. Regional cerebral blood flow (rCBF) was measured with PET at the beginning and end of the trial. RESULTS: Fabry patients had a significantly greater increase in rCBF following visual stimulation and acetazolamide challenge compared to controls. Visual reactivity was normal. The time for recovery of the cerebral vasculature following acetazolamide was prolonged in Fabry patients compared to controls. The abnormal rCBF response induced by visual stimulation and acetazolamide decreased significantly following enzyme replacement therapy, as did the prolonged recovery of the cerebral vasculature. CONCLUSIONS: Enzyme replacement therapy reverses the exaggerated cerebrovascular response in Fabry disease

    Autophagic dysfunction in mucolipidosis type IV patients

    Get PDF
    Mutations in Mucolipin 1 (MCOLN1) have been linked to mucolipidosis type IV (MLIV), a lysosomal storage disease characterized by several neurological and ophthalmological abnormalities. It has been proposed that MCOLN1 might regulate transport of membrane components in the late endosomal–lysosomal pathway; however, the mechanisms by which defects of MCOLN1 function result in mental and psychomotor retardation remain largely unknown. In this study, we show constitutive activation of autophagy in fibroblasts obtained from MLIV patients. Accumulation of autophagosomes in MLIV cells was due to the increased de novo autophagosome formation and to delayed fusion of autophagosomes with late endosomes/lysosomes. Impairment of the autophagic pathway led to increased levels and aggregation of p62, suggesting that abnormal accumulation of ubiquitin proteins may contribute to the neurodegeneration observed in MLIV patients. In addition, we found that delivery of platelet-derived growth factor receptor to lysosomes is delayed in MCOLN1-deficient cells, suggesting that MCOLN1 is necessary for efficient fusion of both autophagosomes and late endosomes with lysosomes. Our data are in agreement with recent evidence showing that autophagic defects may be a common characteristic of many neurodegenerative disorders

    The Saccadic and Neurological Deficits in Type 3 Gaucher Disease

    Get PDF
    Our objective was to characterize the saccadic eye movements in patients with type 3 Gaucher disease (chronic neuronopathic) in relationship to neurological and neurophysiological abnormalities. For approximately 4 years, we prospectively followed a cohort of 15 patients with Gaucher type 3, ages 8–28 years, by measuring saccadic eye movements using the scleral search coil method. We found that patients with type 3 Gaucher disease had a significantly higher regression slope of duration vs amplitude and peak duration vs amplitude compared to healthy controls for both horizontal and vertical saccades. Saccadic latency was significantly increased for horizontal saccades only. Downward saccades were more affected than upward saccades. Saccade abnormalities increased over time in some patients reflecting the slowly progressive nature of the disease. Phase plane plots showed individually characteristic patterns of abnormal saccade trajectories. Oculo-manual dexterity scores on the Purdue Pegboard test were low in virtually all patients, even in those with normal cognitive function. Vertical saccade peak duration vs amplitude slope significantly correlated with IQ and with the performance on the Purdue Pegboard but not with the brainstem and somatosensory evoked potentials. We conclude that, in patients with Gaucher disease type 3, saccadic eye movements and oculo-manual dexterity are representative neurological functions for longitudinal studies and can probably be used as endpoints for therapeutic clinical trials

    Autonomic neuropathy in Fabry disease: a prospective study using the Autonomic Symptom Profile and cardiovascular autonomic function tests

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Fabry patients have symptoms and signs compatible with autonomic dysfunction. These symptoms and signs are considered to be due to impairment of the peripheral nervous system, but findings indicative of autonomic neuropathy in other diseases, such as orthostatic intolerance and male sexual dysfunction, are infrequently reported in Fabry disease. The aim of our study was to investigate autonomic symptoms and cardiovascular autonomic function in a large cohort of male and female Fabry patients.</p> <p>Methods</p> <p>Forty-eight Fabry patients (15 male, 30 treated with enzyme replacement therapy) and 48 sex- and age-matched controls completed a questionnaire on autonomic symptoms (the Autonomic Symptom Profile). Thirty-six Fabry patients underwent cardiovascular function tests.</p> <p>Results</p> <p>The Autonomic Symptom Profile revealed a significantly higher sum score in Fabry patients than in healthy control subjects (22 versus 12), but a relatively low score compared to patients with proven autonomic neuropathy. Fabry patients scored worse than healthy controls in the orthostatic intolerance domain. Scores in the male sexual dysfunction domain were comparable between healthy controls and male Fabry patients. The cardiovascular autonomic function tests revealed only mild abnormalities in seven patients. None of these seven patients showed more than one abnormal test result. Enzyme replacement therapy was not associated with less severe disease, lower ASP scores or less frequent abnormal cardiovascular function test results.</p> <p>Conclusions</p> <p>Male sexual function and autonomic control of the cardiovascular system are nearly normal in Fabry patients, which cast doubt on the general accepted assumption that autonomic neuropathy is the main cause of symptoms and signs compatible with autonomic dysfunction in Fabry disease. Possibly, end-organ damage plays a key role in the development of symptoms and signs in Fabry patients. An exceptional kind of autonomic neuropathy is another but less likely explanation.</p

    TFEB regulates lysosomal proteostasis

    Get PDF
    Loss-of-function diseases are often caused by destabilizing mutations that lead to protein misfolding and degradation. Modulating the innate protein homeostasis (proteostasis) capacity may lead to rescue of native folding of the mutated variants, thereby ameliorating the disease phenotype. In lysosomal storage disorders (LSDs), a number of highly prevalent alleles have missense mutations that do not impair the enzyme's catalytic activity but destabilize its native structure, resulting in the degradation of the misfolded protein. Enhancing the cellular folding capacity enables rescuing the native, biologically functional structure of these unstable mutated enzymes. However, proteostasis modulators specific for the lysosomal system are currently unknown. Here, we investigate the role of the transcription factor EB (TFEB), a master regulator of lysosomal biogenesis and function, in modulating lysosomal proteostasis in LSDs. We show that TFEB activation results in enhanced folding, trafficking and lysosomal activity of a severely destabilized glucocerebrosidase (GC) variant associated with the development of Gaucher disease (GD), the most common LSD. TFEB specifically induces the expression of GC and of key genes involved in folding and lysosomal trafficking, thereby enhancing both the pool of mutated enzyme and its processing through the secretory pathway. TFEB activation also rescues the activity of a β-hexosaminidase mutant associated with the development of another LSD, Tay–Sachs disease, thus suggesting general applicability of TFEB-mediated proteostasis modulation to rescue destabilizing mutations in LSDs. In summary, our findings identify TFEB as a specific regulator of lysosomal proteostasis and suggest that TFEB may be used as a therapeutic target to rescue enzyme homeostasis in LSDs

    Globotriaosylsphingosine Accumulation and Not Alpha-Galactosidase-A Deficiency Causes Endothelial Dysfunction in Fabry Disease

    Get PDF
    BACKGROUND: Fabry disease (FD) is caused by a deficiency of the lysosomal enzyme alpha-galactosidase A (GLA) resulting in the accumulation of globotriaosylsphingosine (Gb3) in a variety of tissues. While GLA deficiency was always considered as the fulcrum of the disease, recent attention shifted towards studying the mechanisms through which Gb3 accumulation in vascular cells leads to endothelial dysfunction and eventually multiorgan failure. In addition to the well-described macrovascular disease, FD is also characterized by abnormalities of microvascular function, which have been demonstrated by measurements of myocardial blood flow and coronary flow reserve. To date, the relative importance of Gb3 accumulation versus GLA deficiency in causing endothelial dysfunction is not fully understood; furthermore, its differential effects on cardiac micro- and macrovascular endothelial cells are not known. METHODS AND RESULTS: In order to assess the effects of Gb3 accumulation versus GLA deficiency, human macro- and microvascular cardiac endothelial cells (ECs) were incubated with Gb3 or silenced by siRNA to GLA. Gb3 loading caused deregulation of several key endothelial pathways such as eNOS, iNOS, COX-1 and COX-2, while GLA silencing showed no effects. Cardiac microvascular ECs showed a greater susceptibility to Gb3 loading as compared to macrovascular ECs. CONCLUSIONS: Deregulation of key endothelial pathways as observed in FD vasculopathy is likely caused by intracellular Gb3 accumulation rather than deficiency of GLA. Human microvascular ECs, as opposed to macrovascular ECs, seem to be affected earlier and more severely by Gb3 accumulation and this notion may prove fundamental for future progresses in early diagnosis and management of FD patients
    corecore