104 research outputs found

    Study of the X-ray properties of the neutron-star binary 4U 1728-34 from the soft to hard state

    Get PDF
    We studied five XMM-Newton observations of the neutron-star binary 4U 1728-34 covering the hard, intermediate and soft spectral states. By jointly fitting the spectra with several reflection models, we obtained an inclination angle of 25-53deg\deg and an iron abundance up to 10 times the solar. From the fits with reflection models, we found that the fluxes of the reflection and the Comptonised components vary inconsistently; since the latter is assumed to be the illuminating source, this result possibly indicates the contribution of the neutron star surface/boundary layer to the disc reflection. As the source evolved from the relatively soft to the intermediate state, the disc inner radius decreased, opposite to the prediction of the standard accretion disc model. We also explore the possible reasons why the supersolar iron abundance is required by the data and found that this high value is probably caused by the absence of the hard photons in the XMM-Newton data.Comment: 14 pages, 6 figure

    The Advanced X-ray Timing Array (AXTAR)

    Full text link
    AXTAR is an X-ray observatory mission concept, currently under study in the U.S., that combines very large collecting area, broadband spectral coverage, high time resolution, highly flexible scheduling, and an ability to respond promptly to time-critical targets of opportunity. It is optimized for submillisecond timing of bright Galactic X-ray sources in order to study phenomena at the natural time scales of neutron star surfaces and black hole event horizons, thus probing the physics of ultradense matter, strongly curved spacetimes, and intense magnetic fields. AXTAR's main instrument is a collimated, thick Si pixel detector with 2-50 keV coverage and 8 square meters collecting area. For timing observations of accreting neutron stars and black holes, AXTAR provides at least an order of magnitude improvement in sensitivity over both RXTE and Constellation-X. AXTAR also carries a sensitive sky monitor that acts as a trigger for pointed observations of X-ray transients and also provides continuous monitoring of the X-ray sky with 20 times the sensitivity of the RXTE ASM. AXTAR builds on detector and electronics technology previously developed for other applications and thus combines high technical readiness and well understood cost.Comment: 4 pages with 1 figure, to appear in the proceedings of "A Decade of Accreting Millisecond X-ray Pulsars", Amsterdam, April 2008, eds. R. Wijnands et al. (AIP Conf. Proc.). Footnote and references adde

    The Island state of the Atoll Source 4U 1820--30

    Get PDF
    We study the rapid X-ray time variability in all public data available from the \textit{Rossi X-ray Timing Explorer's} Proportional Counter Array on the atoll source 4U 1820--30 in the low-luminosity island state. A total of 46\sim46 ks of data were used. We compare the frequencies of the variability components of 4U 1820--30 with those in other atolls sources. These frequencies were previously found to follow a universal scheme of correlations. We find that 4U 1820--30 shows correlations that are shifted by factors of 1.13±0.011.13\pm0.01 and 1.21±0.021.21\pm0.02 with respect to those in other atoll sources. These shifts are similar to, but smaller than the shift factor 1.45\sim1.45 previously reported for some accreting millisecond pulsars. Therefore, 4U 1820--30 is the first atoll source which shows no significant pulsations but has a significant shift in the frequency correlations compared with other 3 non-pulsating atoll sources.Comment: 21 pages, 8 Figures, submitted to Ap

    Outflow Legacy Accretion Survey: unveiling the wind driving mechanism in BHXRBs

    Get PDF
    Transient black-hole X-ray binaries viewed at high inclinations display blue-shifted absorption lines in their X-ray spectra. These features are the signatures of powerful, hot and equatorial accretion disk winds being driven from these systems in their luminous soft states. Remarkably, blue-shifted absorption lines have recently also been discovered in optical and NIR recombination lines and ultraviolet resonance features. These features must also be produced in an outflow, but the physical conditions traced by these outflows are different. Despite this, the characteristic Doppler velocities of all three types of signatures are comparable, yet they have never been observed simultaneously. It is therefore completely unclear if they are associated with distinct outflows (e.g. driven by different mechanisms) or simply with different regions/phases within the same outflow. Here, we propose to answer this question by carrying out simultaneous time-resolved spectroscopy of a high-inclination system in the X-ray, ultraviolet and optical bands, in its two distinct physical configurations (hard- and soft-states). This will allow us to test if the three types of wind features are present simultaneously, and, if so, whether they display correlated variability and/or velocity structure

    The high-energy emission from HD 93129A near periastron

    Get PDF
    We conducted an observational campaign towards one of the most massive and luminous colliding wind binaries in the Galaxy, HD~93129A, close to its periastron passage in 2018. During this time the source was predicted to be in its maximum of high-energy emission. Here we present our data analysis from the X-ray satellites \textit{Chandra} and \textit{NuSTAR} and the γ-ray satellite \textit{AGILE}. High-energy emission coincident with HD~93129A was detected in the X-ray band up to ∼18~keV, whereas in the γ-ray band only upper limits were obtained. We interpret the derived fluxes using a non-thermal radiative model for the wind-collision region. We establish a conservative upper limit for the fraction of the wind kinetic power that is converted into relativistic electron acceleration, fNT,e0.3~G. We also argue a putative interpretation of the emission from which we estimate fNT,e≈0.006 and BWCR≈0.5~G. We conclude that multi-wavelength, dedicated observing campaigns during carefully selected epochs are a powerful tool for characterising the relativistic particle content and magnetic field intensity in colliding wind binaries

    The RS Oph outburst of 2021 monitored in X-rays with NICER

    Full text link
    The 2021 outburst of the symbiotic recurrent nova RS Oph was monitored with the Neutron Star Interior Composition Explorer Mission (NICER) in the 0.2-12 keV range from day one after the optical maximum, until day 88, producing an unprecedented, detailed view of the outburst development. The X-ray flux preceding the supersoft X-ray phase peaked almost 5 days after optical maximum and originated only in shocked ejecta for 21 to 25 days. The emission was thermal; in the first 5 days only a non-collisional-ionization equilibrium model fits the spectrum, and a transition to equilibrium occurred between days 6 and 12. The ratio of peak X-rays flux measured in the NICER range to that measured with Fermi in the 60 MeV-500 GeV range was about 0.1, and the ratio to the peak flux measured with H.E.S.S. in the 250 GeV-2.5 TeV range was about 100. The central supersoft X-ray source (SSS), namely the shell hydrogen burning white dwarf (WD), became visible in the fourth week, initially with short flares. A huge increase in flux occurred on day 41, but the SSS flux remained variable. A quasi-periodic oscillation every ~35 s was always observed during the SSS phase, with variations in amplitude and a period drift that appeared to decrease in the end. The SSS has characteristics of a WD of mass >1 M(solar). Thermonuclear burning switched off shortly after day 75, earlier than in 2006 outburst. We discuss implications for the nova physics.Comment: Accepted for publication in the Astrophysical Journa

    A Comprehensive X-ray Report on AT2019wey

    Get PDF
    The Galactic low-mass X-ray binary AT2019wey (ATLAS19bcxp, SRGA J043520.9+552226, SRGE J043523.3+552234, ZTF19acwrvzk) was discovered as a new optical transient in Dec 2019, and independently as an X-ray transient in Mar 2020. In this paper, we present comprehensive NICER, NuSTAR, Chandra, Swift, and MAXI observations of AT2019wey from ~1 year prior to the discovery to the end of September 2020. AT2019wey appeared as a ~1 mCrab source and stayed at this flux density for several months, displaying a hard X-ray spectrum that can be modeled as a power-law with photon index Gamma~1.8. In June 2020 it started to brighten, and reached ~20 mCrab in ~2 months. The inclination of this system can be constrained to i≾30 deg by modeling the reflection spectrum. Starting from late-August (~59082 MJD), AT2019wey entered into the hard-intermediate state (HIMS), and underwent a few week-long timescale outbursts, where the brightening in soft X-rays is correlated with the enhancement of a thermal component. Low-frequency quasi-periodic oscillation (QPO) was observed in the HIMS. We detect no pulsation and in timing analysis of the NICER and NuSTAR data. The X-ray states and power spectra of AT2019wey are discussed against the landscape of low-mass X-ray binaries
    corecore