12 research outputs found

    Epidemiology of intra-abdominal infection and sepsis in critically ill patients: “AbSeS”, a multinational observational cohort study and ESICM Trials Group Project

    Get PDF
    Purpose: To describe the epidemiology of intra-abdominal infection in an international cohort of ICU patients according to a new system that classifies cases according to setting of infection acquisition (community-acquired, early onset hospital-acquired, and late-onset hospital-acquired), anatomical disruption (absent or present with localized or diffuse peritonitis), and severity of disease expression (infection, sepsis, and septic shock). Methods: We performed a multicenter (n = 309), observational, epidemiological study including adult ICU patients diagnosed with intra-abdominal infection. Risk factors for mortality were assessed by logistic regression analysis. Results: The cohort included 2621 patients. Setting of infection acquisition was community-acquired in 31.6%, early onset hospital-acquired in 25%, and late-onset hospital-acquired in 43.4% of patients. Overall prevalence of antimicrobial resistance was 26.3% and difficult-to-treat resistant Gram-negative bacteria 4.3%, with great variation according to geographic region. No difference in prevalence of antimicrobial resistance was observed according to setting of infection acquisition. Overall mortality was 29.1%. Independent risk factors for mortality included late-onset hospital-acquired infection, diffuse peritonitis, sepsis, septic shock, older age, malnutrition, liver failure, congestive heart failure, antimicrobial resistance (either methicillin-resistant Staphylococcus aureus, vancomycin-resistant enterococci, extended-spectrum beta-lactamase-producing Gram-negative bacteria, or carbapenem-resistant Gram-negative bacteria) and source control failure evidenced by either the need for surgical revision or persistent inflammation. Conclusion: This multinational, heterogeneous cohort of ICU patients with intra-abdominal infection revealed that setting of infection acquisition, anatomical disruption, and severity of disease expression are disease-specific phenotypic characteristics associated with outcome, irrespective of the type of infection. Antimicrobial resistance is equally common in community-acquired as in hospital-acquired infection

    Thermal-optical mechanical waves of the microelongated semiconductor medium with fractional order heat time derivatives in a rotational field

    No full text
    Abstract Outlined here is an innovative method for characterizing a layer of microelongated semiconductor material under excitation. Fractional time derivatives of a heat equation with a rotational field are used to probe the model during photo-excitation processes. Micropolar-thermoelasticity theory, which the model implements, introduces the microelongation scalar function to characterize the processes occurring inside the microelements. When the microelongation parameters are considered following the photo-thermoelasticity theory, the model investigates the interaction scenario between optical-thermo-mechanical waves under the impact of rotation parameters. During electronic and thermoelastic deformation, the key governing equations have been reduced to dimensionless form. Laplace and Fourier's transformations are used to solve this mathematical problem. Isotropic, homogeneous, and linear microelongated semiconductor medium's general solutions to their respective fundamental fields are derived in two dimensions (2D). To get complete solutions, several measurements must be taken at the free surface of the medium. As an example of numerical modeling of the important fields, we will use the silicon (Si) material’s physicomechanical characteristics. Several comparisons were made using different values of relaxation time and rotation parameters, and the results were graphically shown

    Dissecting susceptibility from exogenous triggers: The model of <em>Alopecia areata</em> and associated inflammatory skin diseases.

    No full text
    BACKGROUND: Alopecia areata (AA) is a T-cell-driven autoimmune disease of the hair follicle and frequently reported to be associated with inflammatory skin diseases (ISD) such as atopic eczema (AE) or psoriasis. Interestingly, AA on the one hand and both AE and psoriasis on the other hand are believed to be driven by mutually antagonistic T-cell subsets. OBJECTIVE: To characterize AA-specific T-cell profiles and inflammatory pattern by intra-individual comparison of AA and coexistent ISD. METHODS: 112 patients with AA were recruited and investigated for coexisting ISD. In-depth analyses were performed in patients with AA and AE (n = 2), AA and psoriasis (n = 1), AA and psoriasis and AE (n = 1) and AA and lichen planus (n = 1), using histology, immunohistochemistry and cytokine staining of T cells isolated from lesional skin. RESULTS: Of 112 AA patients investigated, 23 suffered from an ISD. The prevalence of AE, vitiligo, psoriasis and lichen planus was higher in the investigated AA cohort than in the normal population. The clinical as well as histological phenotype of AA the coexistent ISD were unequivocal. In line with this, T-cell infiltrates were found to be disease-characteristics with AA and lichen planus dominated by CD8+ and IFN-&gamma;+ TNF-&alpha;+ producing T cells while psoriasis lesions in the same patients were dominated by IL-17+ and AE by IL-4+ T cells. CONCLUSION: AA patients have a higher incidence of various T-cell-driven inflammatory skin diseases than the normal population, a phenomenon which might relate to over-activation of skin-homing T cells and to specific immune triggers as the primary cause of inflammation. More importantly, we showed that by using AA as a model disease, our approach of intra-individual comparison of distinct inflammatory responses in the same patient is feasible and offers the unique possibility to gain insights into disease pathogenesis independent from genetic susceptibilities

    Antimicrobial Lessons From a Large Observational Cohort on Intra-abdominal Infections in Intensive Care Units

    No full text
    Severe intra-abdominal infection commonly requires intensive care. Mortality is high and is mainly determined by disease-specific characteristics, i.e. setting of infection onset, anatomical barrier disruption, and severity of disease expression. Recent observations revealed that antimicrobial resistance appears equally common in community-acquired and late-onset hospital-acquired infection. This challenges basic principles in anti-infective therapy guidelines, including the paradigm that pathogens involved in community-acquired infection are covered by standard empiric antimicrobial regimens, and second, the concept of nosocomial acquisition as the main driver for resistance involvement. In this study, we report on resistance profiles of Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis and Enterococcus faecium in distinct European geographic regions based on an observational cohort study on intra-abdominal infections in intensive care unit (ICU) patients. Resistance against aminopenicillins, fluoroquinolones, and third-generation cephalosporins in E. coli, K. pneumoniae and P. aeruginosa is problematic, as is carbapenem-resistance in the latter pathogen. For E. coli and K. pneumoniae, resistance is mainly an issue in Central Europe, Eastern and South-East Europe, and Southern Europe, while resistance in P. aeruginosa is additionally problematic in Western Europe. Vancomycin-resistance in E. faecalis is of lesser concern but requires vigilance in E. faecium in Central and Eastern and South-East Europe. In the subcohort of patients with secondary peritonitis presenting with either sepsis or septic shock, the appropriateness of empiric antimicrobial therapy was not associated with mortality. In contrast, failure of source control was strongly associated with mortality. The relevance of these new insights for future recommendations regarding empiric antimicrobial therapy in intra-abdominal infections is discussed

    Epidemiology of intra-abdominal infection and sepsis in critically ill patients: “AbSeS”, a multinational observational cohort study and ESICM Trials Group Project

    No full text
    Purpose: To describe the epidemiology of intra-abdominal infection in an international cohort of ICU patients according to a new system that classifies cases according to setting of infection acquisition (community-acquired, early onset hospital-acquired, and late-onset hospital-acquired), anatomical disruption (absent or present with localized or diffuse peritonitis), and severity of disease expression (infection, sepsis, and septic shock). Methods: We performed a multicenter (n = 309), observational, epidemiological study including adult ICU patients diagnosed with intra-abdominal infection. Risk factors for mortality were assessed by logistic regression analysis. Results: The cohort included 2621 patients. Setting of infection acquisition was community-acquired in 31.6%, early onset hospital-acquired in 25%, and late-onset hospital-acquired in 43.4% of patients. Overall prevalence of antimicrobial resistance was 26.3% and difficult-to-treat resistant Gram-negative bacteria 4.3%, with great variation according to geographic region. No difference in prevalence of antimicrobial resistance was observed according to setting of infection acquisition. Overall mortality was 29.1%. Independent risk factors for mortality included late-onset hospital-acquired infection, diffuse peritonitis, sepsis, septic shock, older age, malnutrition, liver failure, congestive heart failure, antimicrobial resistance (either methicillin-resistant Staphylococcus aureus, vancomycin-resistant enterococci, extended-spectrum beta-lactamase-producing Gram-negative bacteria, or carbapenem-resistant Gram-negative bacteria) and source control failure evidenced by either the need for surgical revision or persistent inflammation. Conclusion: This multinational, heterogeneous cohort of ICU patients with intra-abdominal infection revealed that setting of infection acquisition, anatomical disruption, and severity of disease expression are disease-specific phenotypic characteristics associated with outcome, irrespective of the type of infection. Antimicrobial resistance is equally common in community-acquired as in hospital-acquired infection. © 2019, The Author(s)

    Epidemiology of intra-abdominal infection and sepsis in critically ill patients: "AbSeS", a multinational observational cohort study and ESICM Trials Group Project

    No full text
    PurposeTo describe the epidemiology of intra-abdominal infection in an international cohort of ICU patients according to a new system that classifies cases according to setting of infection acquisition (community-acquired, early onset hospital-acquired, and late-onset hospital-acquired), anatomical disruption (absent or present with localized or diffuse peritonitis), and severity of disease expression (infection, sepsis, and septic shock).MethodsWe performed a multicenter (n=309), observational, epidemiological study including adult ICU patients diagnosed with intra-abdominal infection. Risk factors for mortality were assessed by logistic regression analysis.ResultsThe cohort included 2621 patients. Setting of infection acquisition was community-acquired in 31.6%, early onset hospital-acquired in 25%, and late-onset hospital-acquired in 43.4% of patients. Overall prevalence of antimicrobial resistance was 26.3% and difficult-to-treat resistant Gram-negative bacteria 4.3%, with great variation according to geographic region. No difference in prevalence of antimicrobial resistance was observed according to setting of infection acquisition. Overall mortality was 29.1%. Independent risk factors for mortality included late-onset hospital-acquired infection, diffuse peritonitis, sepsis, septic shock, older age, malnutrition, liver failure, congestive heart failure, antimicrobial resistance (either methicillin-resistant Staphylococcus aureus, vancomycin-resistant enterococci, extended-spectrum beta-lactamase-producing Gram-negative bacteria, or carbapenem-resistant Gram-negative bacteria) and source control failure evidenced by either the need for surgical revision or persistent inflammation.ConclusionThis multinational, heterogeneous cohort of ICU patients with intra-abdominal infection revealed that setting of infection acquisition, anatomical disruption, and severity of disease expression are disease-specific phenotypic characteristics associated with outcome, irrespective of the type of infection. Antimicrobial resistance is equally common in community-acquired as in hospital-acquired infection

    Epidemiology and outcomes of hospital-acquired bloodstream infections in intensive care unit patients: the EUROBACT-2 international cohort study

    No full text
    Purpose: In the critically ill, hospital-acquired bloodstream infections (HA-BSI) are associated with significant mortality. Granular data are required for optimizing management, and developing guidelines and clinical trials. Methods: We carried out a prospective international cohort study of adult patients (≥ 18 years of age) with HA-BSI treated in intensive care units (ICUs) between June 2019 and February 2021. Results: 2600 patients from 333 ICUs in 52 countries were included. 78% HA-BSI were ICU-acquired. Median Sequential Organ Failure Assessment (SOFA) score was 8 [IQR 5; 11] at HA-BSI diagnosis. Most frequent sources of infection included pneumonia (26.7%) and intravascular catheters (26.4%). Most frequent pathogens were Gram-negative bacteria (59.0%), predominantly Klebsiella spp. (27.9%), Acinetobacter spp. (20.3%), Escherichia coli (15.8%), and Pseudomonas spp. (14.3%). Carbapenem resistance was present in 37.8%, 84.6%, 7.4%, and 33.2%, respectively. Difficult-to-treat resistance (DTR) was present in 23.5% and pan-drug resistance in 1.5%. Antimicrobial therapy was deemed adequate within 24 h for 51.5%. Antimicrobial resistance was associated with longer delays to adequate antimicrobial therapy. Source control was needed in 52.5% but not achieved in 18.2%. Mortality was 37.1%, and only 16.1% had been discharged alive from hospital by day-28. Conclusions: HA-BSI was frequently caused by Gram-negative, carbapenem-resistant and DTR pathogens. Antimicrobial resistance led to delays in adequate antimicrobial therapy. Mortality was high, and at day-28 only a minority of the patients were discharged alive from the hospital. Prevention of antimicrobial resistance and focusing on adequate antimicrobial therapy and source control are important to optimize patient management and outcomes.</p

    Epidemiology and outcomes of hospital-acquired bloodstream infections in intensive care unit patients: the EUROBACT-2 international cohort study

    No full text
    Purpose In the critically ill, hospital-acquired bloodstream infections (HA-BSI) are associated with significant mortality. Granular data are required for optimizing management, and developing guidelines and clinical trials. Methods We carried out a prospective international cohort study of adult patients (≥ 18 years of age) with HA-BSI treated in intensive care units (ICUs) between June 2019 and February 2021. Results 2600 patients from 333 ICUs in 52 countries were included. 78% HA-BSI were ICU-acquired. Median Sequential Organ Failure Assessment (SOFA) score was 8 [IQR 5; 11] at HA-BSI diagnosis. Most frequent sources of infection included pneumonia (26.7%) and intravascular catheters (26.4%). Most frequent pathogens were Gram-negative bacteria (59.0%), predominantly Klebsiella spp. (27.9%), Acinetobacter spp. (20.3%), Escherichia coli (15.8%), and Pseudomonas spp. (14.3%). Carbapenem resistance was present in 37.8%, 84.6%, 7.4%, and 33.2%, respectively. Difficult-to-treat resistance (DTR) was present in 23.5% and pan-drug resistance in 1.5%. Antimicrobial therapy was deemed adequate within 24 h for 51.5%. Antimicrobial resistance was associated with longer delays to adequate antimicrobial therapy. Source control was needed in 52.5% but not achieved in 18.2%. Mortality was 37.1%, and only 16.1% had been discharged alive from hospital by day-28. Conclusions HA-BSI was frequently caused by Gram-negative, carbapenem-resistant and DTR pathogens. Antimicrobial resistance led to delays in adequate antimicrobial therapy. Mortality was high, and at day-28 only a minority of the patients were discharged alive from the hospital. Prevention of antimicrobial resistance and focusing on adequate antimicrobial therapy and source control are important to optimize patient management and outcomes

    Poor timing and failure of source control are risk factors for mortality in critically ill patients with secondary peritonitis

    No full text
    Purpose: To describe data on epidemiology, microbiology, clinical characteristics and outcome of adult patients admitted in the intensive care unit (ICU) with secondary peritonitis, with special emphasis on antimicrobial therapy and source control. Methods: Post hoc analysis of a multicenter observational study (Abdominal Sepsis Study, AbSeS) including 2621 adult ICU patients with intra-abdominal infection in 306 ICUs from 42 countries. Time-till-source control intervention was calculated as from time of diagnosis and classified into 'emergency' (&lt; 2 h), 'urgent' (2-6 h), and 'delayed' (&gt; 6 h). Relationships were assessed by logistic regression analysis and reported as odds ratios (OR) and 95% confidence interval (CI). Results: The cohort included 1077 cases of microbiologically confirmed secondary peritonitis. Mortality was 29.7%. The rate of appropriate empiric therapy showed no difference between survivors and non-survivors (66.4% vs. 61.3%, p = 0.1). A stepwise increase in mortality was observed with increasing Sequential Organ Failure Assessment (SOFA) scores (19.6% for a value ≤ 4-55.4% for a value &gt; 12, p &lt; 0.001). The highest odds of death were associated with septic shock (OR 3.08 [1.42-7.00]), late-onset hospital-acquired peritonitis (OR 1.71 [1.16-2.52]) and failed source control evidenced by persistent inflammation at day 7 (OR 5.71 [3.99-8.18]). Compared with 'emergency' source control intervention (&lt; 2 h of diagnosis), 'urgent' source control was the only modifiable covariate associated with lower odds of mortality (OR 0.50 [0.34-0.73]). Conclusion: 'Urgent' and successful source control was associated with improved odds of survival. Appropriateness of empirical antimicrobial treatment did not significantly affect survival suggesting that source control is more determinative for outcome

    Epidemiology of intra-abdominal infection and sepsis in critically ill patients: "AbSeS", a multinational observational cohort study and ESICM Trials Group Project

    No full text
    PURPOSE: To describe the epidemiology of intra-abdominal infection in an international cohort of ICU patients according to a new system that classifies cases according to setting of infection acquisition (community-acquired, early onset hospital-acquired, and late-onset hospital-acquired), anatomical disruption (absent or present with localized or diffuse peritonitis), and severity of disease expression (infection, sepsis, and septic shock). METHODS: We performed a multicenter (n = 309), observational, epidemiological study including adult ICU patients diagnosed with intra-abdominal infection. Risk factors for mortality were assessed by logistic regression analysis. RESULTS: The cohort included 2621 patients. Setting of infection acquisition was community-acquired in 31.6%, early onset hospital-acquired in 25%, and late-onset hospital-acquired in 43.4% of patients. Overall prevalence of antimicrobial resistance was 26.3% and difficult-to-treat resistant Gram-negative bacteria 4.3%, with great variation according to geographic region. No difference in prevalence of antimicrobial resistance was observed according to setting of infection acquisition. Overall mortality was 29.1%. Independent risk factors for mortality included late-onset hospital-acquired infection, diffuse peritonitis, sepsis, septic shock, older age, malnutrition, liver failure, congestive heart failure, antimicrobial resistance (either methicillin-resistant Staphylococcus aureus, vancomycin-resistant enterococci, extended-spectrum beta-lactamase-producing Gram-negative bacteria, or carbapenem-resistant Gram-negative bacteria) and source control failure evidenced by either the need for surgical revision or persistent inflammation. CONCLUSION: This multinational, heterogeneous cohort of ICU patients with intra-abdominal infection revealed that setting of infection acquisition, anatomical disruption, and severity of disease expression are disease-specific phenotypic characteristics associated with outcome, irrespective of the type of infection. Antimicrobial resistance is equally common in community-acquired as in hospital-acquired infection.status: publishe
    corecore