104 research outputs found
Preparation and characterization of hydroquinone based polyoxalate and its application in the removal of heavy metals from water
Hydroquinone based polyoxalate was synthesized from oxalyl chloride and hydroquinone. The polymer was characterized with FTIR, 1H-NMR, 13C-NMR, PXRD, SEM and thermal analysis. The chelation behaviour of the polymer towards Pb(II), Cd(II), and Hg(II) in aqueous solutions was studied by batch technique as a function of contact time and pH. The polymer showed high metal uptake toward Pb(II) and Cd(II) and moderate metal uptake toward Hg(II). The adsorption capacity was not affected by the pH of solution. The adsorption data were fitted with second order kinetic model and the isotherms models of Langmuir and Freundlich. Thermodynamics measurements showed that sorption process was spontaneous. Furthermore, the chelating polymer was loaded with metal ions using fixed bed column. For regenerating the loaded polymer, different eluting agents include HNO3, H2SO4, and EDTA was investigated. The highest recovery of metal ions was achieved using HNO3, indicating that desorption process was governed by the solubility factor and cation exchange mechanism.Â
Knowledge, Attitudes and Practices of Yemeni Women Attending Primary Healthcare Centers in Sana’a City towards Family Planning
Objective: To investigate the knowledge, attitudes and practices (KAPs) of Yemeni women attending primary healthcare centers (PHCCs) in Sana’a city towards family planning (FP).Methods: A descriptive, cross-sectional study was conducted among women attending three PHCCs in Sana'a city; namely, in Hadah, Al-Soneinah and Madhbah zones, between 21 November and 1 December 2011. The study included a sample of 281 married women, where data about socio-demographic characteristics and the KAPs towards FP were collected by interviewing women using a pre-designed, structured questionnaire and then analyzed using appropriate statistical tests.Results: Of the married women attending the PHCCs in Sana'a, the majority of respondents were from urban areas (96.4%; 271/281), aged between 25–29 years old (23.1% 65/281), employed (75.8%; 213/281) and with primary or secondary levels of education (60.9%; 171/281). In addition, the majority of women had a marriage length of 6–11 years (65.5%; 182/281) and 3–4 children (44.8%; 126/281). The majority of respondents (89.7%) knew about FP, and 60.2% considered it as birth spacing. Moreover, most respondents (87.5%) were aware of at least four methods of FP, and 53.6% heard of modern FP contraceptive methods. Of them, 85.9% and 74.0% heard of contraceptive pills and intrauterine contraceptive devices (ICDU), respectively; however, the least known contraceptive method was the use of male condoms (28.1%). Healthcare providers were the source of information on FP for the majority of respondents (60.5%). The majority of respondents believed that the optimum spacing between births should be two or three years, being 31.7% and 38.8%, respectively. In addition, most respondents (80.8%) believed that both couples must share the decision-making on FP. Socio-cultural beliefs and values were thought to be the most common (57.3%) barriers to the practice of FP.Conclusions: Although the majority of Yemeni women seeking healthcare after marriage have a good level of knowledge of several traditional and modern methods of FP and their preference of long birth spacing, the use of such methods is still limited to contraceptive pills and ICDU. Therefore, attention should be paid to health education of women on the benefits of using other alternative methods of FP for better family lifestyle, health and well-being
Removal of Carbamazepine onto Modified Zeolitic Tuff in Different Water Matrices: Batch and Continuous Flow Experiments
Carbamazepine (CBZ) is the most frequently detected pharmaceutical residues in aquatic environments effluent by wastewater treatment plants. Batch and column experiments were conducted to evaluate the removal of CBZ from ultra-pure water and wastewater treatment plant (WWTP) effluent using raw zeolitic tuff (RZT) and surfactant modified zeolite (SMZ). Point zero net charge (pHpzc), X-ray diffraction (XRD), X-ray fluorescence (XRF), and Fourier Transform Infrared (FTIR) were investigated for adsorbents to evaluate the physiochemical changes resulted from the modification process using Hexadecyltrimethylammonium bromide (HDTMA-Br). XRD and FTIR showed that the surfactant modification of RZT has created an amorphous surface with new alkyl groups on the surface. The pHpzc was determined to be approximately 7.9 for RZT and SMZ. The results indicated that the CBZ uptake by SMZ is higher than RZT in all sorption tests (\u3e8 fold). Batch results showed that the sorption capacity of RZT and SMZ in WWTP effluent (0.029 and 0.25 mg/g) is higher than RZT and SMZ (0.018 and 0.14 mg/g) in ultrapure water (1.6–1.8 fold). Batch tests showed that the equilibrium time of CBZ removal in the WWTP matrix (47 h) is much longer than CBZ removal in ultrapure water. The sorption capacity of RZT & SMZ in WWTP effluent (0.03, 0.33 mg/g) is higher than RZT and SMZ (0.02 and 0.17 mg/g) in ultrapure water (1.5–2 fold) using column test. This study has clearly demonstrated that the performance of RZT and SMZ is more efficient for the removal of CBZ from realistic wastewater than ultrapure water. It is evident that the surfactant modification of RZT has enhanced the CBZ removal in both matrices
Removal of carbamazepine onto modified zeolitic tuff in different water matrices: Batch and continuous flow experiments
Carbamazepine (CBZ) is the most frequently detected pharmaceutical residues in aquatic environments effluent by wastewater treatment plants. Batch and column experiments were con-ducted to evaluate the removal of CBZ from ultra-pure water and wastewater treatment plant (WWTP) effluent using raw zeolitic tuff (RZT) and surfactant modified zeolite (SMZ). Point zero net charge (pHpzc), X-ray diffraction (XRD), X-ray fluorescence (XRF), and Fourier Transform Infrared (FTIR) were investigated for adsorbents to evaluate the physiochemical changes resulted from the modification process using Hexadecyltrimethylammonium bromide (HDTMA-Br). XRD and FTIR showed that the surfactant modification of RZT has created an amorphous surface with new alkyl groups on the surface. The pHpzc was determined to be approximately 7.9 for RZT and SMZ. The results indicated that the CBZ uptake by SMZ is higher than RZT in all sorption tests (\u3e8 fold). Batch results showed that the sorption capacity of RZT and SMZ in WWTP effluent (0.029 and 0.25 mg/g) is higher than RZT and SMZ (0.018 and 0.14 mg/g) in ultrapure water (1.6–1.8 fold). Batch tests showed that the equilibrium time of CBZ removal in the WWTP matrix (47 h) is much longer than CBZ removal in ultrapure water. The sorption capacity of RZT & SMZ in WWTP effluent (0.03, 0.33 mg/g) is higher than RZT and SMZ (0.02 and 0.17 mg/g) in ultrapure water (1.5–2 fold) using column test. This study has clearly demonstrated that the performance of RZT and SMZ is more efficient for the removal of CBZ from realistic wastewater than ultrapure water. It is evident that the surfactant modification of RZT has enhanced the CBZ removal in both matrices
GIS-based multi-criteria decision making for delineation of potential groundwater recharge zones for sustainable resource management in the Eastern Mediterranean: a case study
In light of population growth and climate change, groundwater is one of the most important water resources globally. Groundwater is crucial for sustaining many vital sectors in Syria, including industrial and agricultural sectors. However, groundwater exploitation has significantly escalated to meet different water needs especially in the post-war period and the earthquake disaster. Therefore, the goal was this study delineation of the groundwater potential zones (GPZs) by integrating the analytic hierarchy process (AHP) method in a geographic information systems (GIS) within the AlAlqerdaha river basin in western Syria. In this study, ten criteria were used to map the spatial distribution of GPZs, including slope, geomorphology, drainage density, land use/land cover (LU/LC), lineament density, lithology, rainfall, soil, curvature and topographic wetness index (TWI). GPZs map was validated by using the location of 74 wells and the Receiver Operating Characteristic Curve (ROC). The findings suggest that the study area is divided into five GPZs: very low, 21.39 km2 (10.87%); low, 52.45 km2 (26.65%); moderate, 65.64 km2 (33.35%); high, 40.45 km2 (20.55%) and very high, 16.90 km2 (8.58%). High and very high zones mainly corresponded to the western regions of the study area. The conducted spatial modeling indicated that the AHP-based GPZs map showed a remarkably acceptable correlation with wells locations (AUC = 87.7%, n = 74), demonstrating the precision of the AHP–GIS as a rating method. The results of this study provide objective and constructive outputs that can help decision-makers to optimally manage groundwater resources in the post-war phase in Syria
Haloquadratum walsbyi yields a versatile, NAD+/NADP+ dual affinity, thermostable, alcohol dehydrogenase (HwADH)
This study presents the first example of an alcohol dehydrogenase (ADH) from the halophilic archaeum Haloquadratum walsbyi (HwADH). A hexahistidine-tagged recombinant HwADH was heterologously overexpressed in Haloferax volcanii. HwADH was purified in one step and was found to be thermophilic with optimal activity at 65 °C. HwADH was active in the presence of 10 % (v/v) organic solvent. The enzyme displayed dual cofactor specificity and a broad substrate scope, maximum activity was detected with benzyl alcohol and 2-phenyl-1- propanol. HwADH accepted aromatic ketones, acetophenone and phenylacetone as substrates. The enzyme also accepted cyclohexanol and aromatic secondary alcohols, 1- phenylethanol and 4-phenyl-2-butanol. H. walsbyi may offer an excellent alternative to other archaeal sources to expand the toolbox of halophilic biocatalysts
SF3B1 hotspot mutations confer sensitivity to PARP inhibition by eliciting a defective replication stress response.
SF3B1 hotspot mutations are associated with a poor prognosis in several tumor types and lead to global disruption of canonical splicing. Through synthetic lethal drug screens, we identify that SF3B1 mutant (SF3B1MUT) cells are selectively sensitive to poly (ADP-ribose) polymerase inhibitors (PARPi), independent of hotspot mutation and tumor site. SF3B1MUT cells display a defective response to PARPi-induced replication stress that occurs via downregulation of the cyclin-dependent kinase 2 interacting protein (CINP), leading to increased replication fork origin firing and loss of phosphorylated CHK1 (pCHK1; S317) induction. This results in subsequent failure to resolve DNA replication intermediates and G2/M cell cycle arrest. These defects are rescued through CINP overexpression, or further targeted by a combination of ataxia-telangiectasia mutated and PARP inhibition. In vivo, PARPi produce profound antitumor effects in multiple SF3B1MUT cancer models and eliminate distant metastases. These data provide the rationale for testing the clinical efficacy of PARPi in a biomarker-driven, homologous recombination proficient, patient population
Cryptic splicing events in the iron transporter ABCB7 and other key target genes in SF3B1-mutant myelodysplastic syndromes.
The splicing factor SF3B1 is the most frequently mutated gene in myelodysplastic syndromes (MDS), and is strongly associated with the presence of ring sideroblasts (RS). We have performed a systematic analysis of cryptic splicing abnormalities from RNA sequencing data on hematopoietic stem cells (HSCs) of SF3B1-mutant MDS cases with RS. Aberrant splicing events in many downstream target genes were identified and cryptic 3' splice site usage was a frequent event in SF3B1-mutant MDS. The iron transporter ABCB7 is a well-recognized candidate gene showing marked downregulation in MDS with RS. Our analysis unveiled aberrant ABCB7 splicing, due to usage of an alternative 3' splice site in MDS patient samples, giving rise to a premature termination codon in the ABCB7 mRNA. Treatment of cultured SF3B1-mutant MDS erythroblasts and a CRISPR/Cas9-generated SF3B1-mutant cell line with the nonsense-mediated decay (NMD) inhibitor cycloheximide showed that the aberrantly spliced ABCB7 transcript is targeted by NMD. We describe cryptic splicing events in the HSCs of SF3B1-mutant MDS, and our data support a model in which NMD-induced downregulation of the iron exporter ABCB7 mRNA transcript resulting from aberrant splicing caused by mutant SF3B1 underlies the increased mitochondrial iron accumulation found in MDS patients with RS
The genomic landscape of cutaneous SCC reveals drivers and a novel azathioprine associated mutational signature
Cutaneous squamous cell carcinoma (cSCC) has a high tumour mutational burden (50 mutations per megabase DNA pair). Here, we combine whole-exome analyses from 40 primary cSCC tumours, comprising 20 well-differentiated and 20 moderately/poorly differentiated tumours, with accompanying clinical data from a longitudinal study of immunosuppressed and immunocompetent patients and integrate this analysis with independent gene expression studies. We identify commonly mutated genes, copy number changes and altered pathways and processes. Comparisons with tumour differentiation status suggest events which may drive disease progression. Mutational signature analysis reveals the presence of a novel signature (signature 32), whose incidence correlates with chronic exposure to the immunosuppressive drug azathioprine. Characterisation of a panel of 15 cSCC tumour-derived cell lines reveals that they accurately reflect the mutational signatures and genomic alterations of primary tumours and provide a valuable resource for the validation of tumour drivers and therapeutic targets
Hemopoietic-specific Sf3b1-K700E knock-in mice display the splicing defect seen in human MDS but develop anemia without ring sideroblasts.
Heterozygous somatic mutations affecting the spliceosome gene SF3B1 drive age-related clonal hematopoiesis, myelodysplastic syndromes (MDS) and other neoplasms. To study their role in such disorders, we generated knock-in mice with hematopoietic-specific expression of Sf3b1-K700E, the commonest type of SF3B1 mutation in MDS. Sf3b1K700E/+ animals had impaired erythropoiesis and progressive anemia without ringed sideroblasts, as well as reduced hematopoietic stem cell numbers and host-repopulating fitness. To understand the molecular basis of these observations, we analyzed global RNA splicing in Sf3b1K700E/+ hematopoietic cells. Aberrant splicing was associated with the usage of cryptic 3' splice and branchpoint sites, as described for human SF3B1 mutants. However, we found a little overlap between aberrantly spliced mRNAs in mouse versus human, suggesting that anemia may be a consequence of globally disrupted splicing. Furthermore, the murine orthologues of genes associated with ring sideroblasts in human MDS, including Abcb7 and Tmem14c, were not aberrantly spliced in Sf3b1K700E/+ mice. Our findings demonstrate that, despite significant differences in affected transcripts, there is overlap in the phenotypes associated with SF3B1-K700E between human and mouse. Future studies should focus on understanding the basis of these similarities and differences as a means of deciphering the consequences of spliceosome gene mutations in MDS
- …