2,090 research outputs found

    Ion-Size Effect at the Surface of a Silica Hydrosol

    Full text link
    The author used synchrotron x-ray reflectivity to study the ion-size effect for alkali ions (Na+^+, K+^+, Rb+^+, and Cs+^+), with densities as high as 4×10187×10184 \times 10^{18}- 7 \times 10^{18} m2^{-2}, suspended above the surface of a colloidal solution of silica nanoparticles in the field generated by the surface electric-double layer. According to the data, large alkali ions preferentially accumulate at the sol's surface replacing smaller ions, a finding that qualitatively agrees with the dependence of the Kharkats-Ulstrup single-ion electrostatic free energy on the ion's radius.Comment: 17 pages, 4 figure

    Longitudinal magnetic excitations in classical spin systems

    Full text link
    Using spin dynamics simulations we predict the splitting of the longitudinal spin wave peak in all antiferromagnets with single site anisotropy into two peaks separated by twice the energy gap at the Brillouin zone center. This phenomenon has yet to be observed experimentally but can be easily investigated through neutron scattering experiments on MnF2_2 and FeF2_2. We have also determined that for all classical Heisenberg models the longitudinal propagative excitations are entirely multiple spin-wave in nature.Comment: four pages three figures, the last two postscript files are two parts of the third figur

    Domain Growth and Finite-Size-Scaling in the Kinetic Ising Model

    Full text link
    This paper describes the application of finite-size scaling concepts to domain growth in systems with a non-conserved order parameter. A finite-size scaling ansatz for the time-dependent order parameter distribution function is proposed, and tested with extensive Monte-Carlo simulations of domain growth in the 2-D spin-flip kinetic Ising model. The scaling properties of the distribution functions serve to elucidate the configurational self-similarity that underlies the dynamic scaling picture. Moreover, it is demonstrated that the application of finite-size-scaling techniques facilitates the accurate determination of the bulk growth exponent even in the presence of strong finite-size effects, the scale and character of which are graphically exposed by the order parameter distribution function. In addition it is found that one commonly used measure of domain size--the scaled second moment of the magnetisation distribution--belies the full extent of these finite-size effects.Comment: 13 pages, Latex. Figures available on request. Rep #9401

    The Refractive Index of Silicon at Gamma Ray Energies

    Full text link
    The index of refraction n(E_{\gamma})=1+\delta(E_{\gamma})+i\beta(E_{\gamma}) is split into a real part \delta and an absorptive part \beta. The absorptive part has the three well-known contributions to the cross section \sigma_{abs}: the photo effect, the Compton effect and the pair creation, but there is also the inelastic Delbr\"uck scattering. Second-order elastic scattering cross sections \sigma_{sca} with Rayleigh scattering (virtual photo effect), virtual Compton effect and Delbr\"uck scattering (virtual pair creation) can be calculated by integrals of the Kramers-Kronig dispersion relations from the cross section \sigma_{abs}. The real elastic scattering amplitudes are proportional to the refractive indices \delta_{photo}, \delta_{Compton} and \delta_{pair}. While for X-rays the negative \delta_{photo} dominates, we show for the first time experimentally and theoretically that the positive \delta_{pair} dominates for \gamma rays, opening a new era of \gamma optics applications, i.e. of nuclear photonics.Comment: 4 pages, 3 figure

    On electromagnetic contributions in WIMP quests

    Get PDF
    The effect pointed out by A. B. Migdal in the 40's (hereafter named Migdal effect) has so far been usually neglected in the direct searches for WIMP Dark Matter candidates. This effect consists in the ionization and the excitation of bound atomic electrons induced by the recoiling atomic nucleus. In the present paper the related theoretical arguments are developed and some consequences of the proper accounting for this effect are discussed by some examples of practical interest.Comment: 14 pages, 6 figures, 2 tables, Int. J. Mod. Phys. A (in publication

    Theory of x-ray absorption by laser-aligned symmetric-top molecules

    Full text link
    We devise a theory of x-ray absorption by symmetric-top molecules which are aligned by an intense optical laser. Initially, the density matrix of the system is composed of the electronic ground state of the molecules and a thermal ensemble of rigid-rotor eigenstates. We formulate equations of motion of the two-color (laser plus x rays) rotational-electronic problem. The interaction with the laser is assumed to be nonresonant; it is described by an electric dipole polarizability tensor. X-ray absorption is approximated as a one-photon process. It is shown that the equations can be separated such that the interaction with the laser can be treated independently of the x rays. The laser-only density matrix is propagated numerically. After each time step, the x-ray absorption is calculated. We apply our theory to study adiabatic alignment of bromine molecules (Br2). The required dynamic polarizabilities are determined using the ab initio linear response methods coupled-cluster singles (CCS), second-order approximate coupled-cluster singles and doubles (CC2), and coupled-cluster singles and doubles (CCSD). For the description of x-ray absorption on the sigma_g 1s --> sigma_u 4p resonance, a parameter-free two-level model is used for the electronic structure of the molecules. Our theory opens up novel perspectives for the quantum control of x-ray radiation.Comment: 14 pages, 4 figures, 1 table, RevTeX4, revise

    Spectroscopy of stripe order in La1.8Sr0.2NiO4 using resonant soft x-ray diffraction

    Get PDF
    Strong resonant enhancements of the charge-order and spin-order superstructure-diffraction intensities in La1.8Sr0.2NiO4 are observed when x-ray energies in the vicinity of the Ni L2,3 absorption edges are used. The pronounced photon-energy and polarization dependences of these diffraction intensities allow for a critical determination of the local symmetry of the ordered spin and charge carriers. We found that not only the antiferromagnetic order but also the charge-order superstructure resides within the NiO2 layers; the holes are mainly located on in-plane oxygens surrounding a Ni2+ site with the spins coupled antiparallel in close analogy to Zhang-Rice singlets in the cuprates.Comment: 4 pages, 3 figure

    Simulations of a single membrane between two walls using a Monte Carlo method

    Get PDF
    Quantitative theory of interbilayer interactions is essential to interpret x-ray scattering data and to elucidate these interactions for biologically relevant systems. For this purpose Monte Carlo simulations have been performed to obtain pressure P and positional fluctuations sigma. A new method, called Fourier Monte-Carlo (FMC), that is based on a Fourier representation of the displacement field, is developed and its superiority over the standard method is demonstrated. The FMC method is applied to simulating a single membrane between two hard walls, which models a stack of lipid bilayer membranes with non-harmonic interactions. Finite size scaling is demonstrated and used to obtain accurate values for P and sigma in the limit of a large continuous membrane. The results are compared with perturbation theory approximations, and numerical differences are found in the non-harmonic case. Therefore, the FMC method, rather than the approximations, should be used for establishing the connection between model potentials and observable quantities, as well as for pure modeling purposes.Comment: 10 pages, 10 figure

    Microscopic calculation of the spin-dependent neutron scattering lengths on 3He

    Full text link
    We report on the spin.dependent neutron scattering length on 3He from a microscopic calculation of p-3H, n-3He, and d-2H scattering employing the Argonne v18 nucleon-nucleon potential with and without additional three-nucleon force. The results and that of a comprehensive R-matrix analysis are compared to a recent measurement. The overall agreement for the scattering lengths is quite good. The imaginary parts of the scattering lengths are very sensitive to the inclusion of three-nucleon forces, whereas the real parts are almost insensitive.Comment: 9 pages, 1 figur
    corecore