5 research outputs found

    The transcriptional response of dendritic cells to mechanical stress dictates their steady-state migration to the lymph node

    No full text
    Les cellules dendritiques se situent Ă  l'interface des rĂ©ponses immunitaires innĂ©es et adaptatives. Les DC immatures patrouillent les tissus Ă  la recherche d’antigĂšne associĂ© au danger. Lorsqu'ils rencontrent des signaux, ils lancent un programme de maturation et migrent vers le ganglion lymphatique pour mettre en place une rĂ©ponse immunitaire adaptative. Cette migration est fortement dĂ©pendante du rĂ©cepteur de chimiokine7 (CCR7), rĂ©gulĂ© positivement lors de la maturation. Cependant, en l’absence de tout signal de danger, certains DC rĂ©gulent la CCR7, quittent les tissus pĂ©riphĂ©riques et migrent vers les ganglions lymphatiques. Le mĂ©canisme Ă  l'origine de cette migration spontanĂ©e est inconnu, un seul article dĂ©crivant l'implication de la voie NF-KB. Nous avons Ă©mis l’hypothĂšse que la stimulation mĂ©canique rĂ©sultant du confinement des DC dans les tissus pĂ©riphĂ©riques pourrait induire leur migration homĂ©ostatique vers les ganglions lymphatiques. En effet, nous avons montrĂ© que les DCs subissent des dĂ©formations nuclĂ©aires lors de leur migration dans des zones confinĂ©es, et nous avons trouvĂ© que ces Ă©vĂ©nements pourraient induire l'expression de CCR7 dans ces cellules et leur donner le pouvoir de migrer vers les ganglions lymphatiques. Nous avons Ă©tudiĂ© l’effet du confinement sur des souris porteuses du gĂšne CCR7-GFP et un confiner in vitro. L’expression de CCR7 dans des cellules dendritiques dĂ©rivĂ©es de la moelle osseuse. En utilisant l’imagerie microscopie, nous avons pu dĂ©tecter une rĂ©gulation positive de la GFP dans les DCs immatures migrant dans un espace confinĂ© (hauteur 3 ”m) ainsi qu’une vitesse de migration accrue. Cela n'a pas Ă©tĂ© observĂ© dans les DC immatures qui Ă©taient confinĂ©s Ă  une hauteur de 4um, ce qui n'induit pas de compression nuclĂ©aire, ni dans les cellules confinĂ©es Ă  une hauteur de 2”m, ce qui induit une rupture de l’enveloppe nuclĂ©aire. Nous avons constatĂ© que la prĂ©sence d'un Arp2/3 actine branchĂ© autour du noyau des cellules confinĂ©es Ă  3 ”m de hauteur est importante pour induire la dĂ©formation nuclĂ©aire et l'activation de la voie cPLA2 qui finalement active la voie NFKB et contrĂŽle la migration homĂ©ostatique des cellules dendritiques in vivo. Nos rĂ©sultats suggĂšrent que la migration des DC vers les organes lymphoĂŻdes pourrait rĂ©sulter du confinement mĂ©canique de leur noyau.In response to mechanical stress, cells assemble a pool of actin around their nucleus, which results in nucleus compression and facilitates cell migration in confined environments. How this phenomenon is regulated and whether it impacts on the fate and function(s) of cells is unclear. Here, we show that actin nucleation at the nucleus of dendritic cells (DCs), sentinels of the immune system, is negatively regulated by Arpin, a recently described inhibitor of the Arp2/3 complex. Limitation of actin polymerization by Arpin protects immature DCs from initiating an Arp2/3-dependent “maturation-like” gene expression program in response to mechanical stress. Activation of this program requires cytosolic phospholipase 2 (cPLA2)-dependent NFKB activation and leads to the expression of ~350 genes, including CCR7, i.e., the chemokine receptor that drives DC migration to lymph nodes. Consistent with these results, we observed that Arpin KO DCs exhibit enhanced migration to lymph nodes even in the absence of inflammation. Remarkably, we found that this transcriptional program also includes anti-inflammatory genes and, accordingly, that mechanically stressed-DCs harbor tolerogenic properties. These results show that by controlling cPLA2 and NFKB activation, Arpin prevents DC spontaneous maturation and migration to lymph nodes in response to physical confinement. They further suggest that the mechanical stress experienced by DCs in peripheral tissues might constitute one of them so far unknown signal(s) that trigger CCR7 expression and DC migration to lymph nodes in homeostasis for maintenance of peripheral tolerance

    La réponse transcriptionnelle des cellules dendritique au stress mécanique dicte leur migration homéostatique vers le ganglion lymphatique

    No full text
    In response to mechanical stress, cells assemble a pool of actin around their nucleus, which results in nucleus compression and facilitates cell migration in confined environments. How this phenomenon is regulated and whether it impacts on the fate and function(s) of cells is unclear. Here, we show that actin nucleation at the nucleus of dendritic cells (DCs), sentinels of the immune system, is negatively regulated by Arpin, a recently described inhibitor of the Arp2/3 complex. Limitation of actin polymerization by Arpin protects immature DCs from initiating an Arp2/3-dependent “maturation-like” gene expression program in response to mechanical stress. Activation of this program requires cytosolic phospholipase 2 (cPLA2)-dependent NFKB activation and leads to the expression of ~350 genes, including CCR7, i.e., the chemokine receptor that drives DC migration to lymph nodes. Consistent with these results, we observed that Arpin KO DCs exhibit enhanced migration to lymph nodes even in the absence of inflammation. Remarkably, we found that this transcriptional program also includes anti-inflammatory genes and, accordingly, that mechanically stressed-DCs harbor tolerogenic properties. These results show that by controlling cPLA2 and NFKB activation, Arpin prevents DC spontaneous maturation and migration to lymph nodes in response to physical confinement. They further suggest that the mechanical stress experienced by DCs in peripheral tissues might constitute one of them so far unknown signal(s) that trigger CCR7 expression and DC migration to lymph nodes in homeostasis for maintenance of peripheral tolerance.Les cellules dendritiques se situent Ă  l'interface des rĂ©ponses immunitaires innĂ©es et adaptatives. Les DC immatures patrouillent les tissus Ă  la recherche d’antigĂšne associĂ© au danger. Lorsqu'ils rencontrent des signaux, ils lancent un programme de maturation et migrent vers le ganglion lymphatique pour mettre en place une rĂ©ponse immunitaire adaptative. Cette migration est fortement dĂ©pendante du rĂ©cepteur de chimiokine7 (CCR7), rĂ©gulĂ© positivement lors de la maturation. Cependant, en l’absence de tout signal de danger, certains DC rĂ©gulent la CCR7, quittent les tissus pĂ©riphĂ©riques et migrent vers les ganglions lymphatiques. Le mĂ©canisme Ă  l'origine de cette migration spontanĂ©e est inconnu, un seul article dĂ©crivant l'implication de la voie NF-KB. Nous avons Ă©mis l’hypothĂšse que la stimulation mĂ©canique rĂ©sultant du confinement des DC dans les tissus pĂ©riphĂ©riques pourrait induire leur migration homĂ©ostatique vers les ganglions lymphatiques. En effet, nous avons montrĂ© que les DCs subissent des dĂ©formations nuclĂ©aires lors de leur migration dans des zones confinĂ©es, et nous avons trouvĂ© que ces Ă©vĂ©nements pourraient induire l'expression de CCR7 dans ces cellules et leur donner le pouvoir de migrer vers les ganglions lymphatiques. Nous avons Ă©tudiĂ© l’effet du confinement sur des souris porteuses du gĂšne CCR7-GFP et un confiner in vitro. L’expression de CCR7 dans des cellules dendritiques dĂ©rivĂ©es de la moelle osseuse. En utilisant l’imagerie microscopie, nous avons pu dĂ©tecter une rĂ©gulation positive de la GFP dans les DCs immatures migrant dans un espace confinĂ© (hauteur 3 ”m) ainsi qu’une vitesse de migration accrue. Cela n'a pas Ă©tĂ© observĂ© dans les DC immatures qui Ă©taient confinĂ©s Ă  une hauteur de 4um, ce qui n'induit pas de compression nuclĂ©aire, ni dans les cellules confinĂ©es Ă  une hauteur de 2”m, ce qui induit une rupture de l’enveloppe nuclĂ©aire. Nous avons constatĂ© que la prĂ©sence d'un Arp2/3 actine branchĂ© autour du noyau des cellules confinĂ©es Ă  3 ”m de hauteur est importante pour induire la dĂ©formation nuclĂ©aire et l'activation de la voie cPLA2 qui finalement active la voie NFKB et contrĂŽle la migration homĂ©ostatique des cellules dendritiques in vivo. Nos rĂ©sultats suggĂšrent que la migration des DC vers les organes lymphoĂŻdes pourrait rĂ©sulter du confinement mĂ©canique de leur noyau

    Figures Alraies et al 2024

    No full text
    Immune cells experience large deformation events while patrolling their environment. These cell shape changes arise from the continuous physical constraints encountered during migration within and between tissues. It has become increasingly clear that these cells can survive and adapt to these changes in cell shape using dedicated shape sensing pathways. However, how shape sensing impacts their behavior and function remains largely unknown. Here we identify a shape sensing mechanism that couples dendritic cell motility to expression of CCR7, the chemokine receptor guiding their migration from the periphery to lymph nodes. We found that this mechanism is controlled by the lipid metabolism enzyme cPLA2, requires nuclear envelop unfolding and tension and is finely tuned by the Arp2/3 actin nucleation complex. We further show that shape sensing through the Arp2/3-cPLA2 axis controls Ikkb-NFkB-dependent transcriptional reprogramming of dendritic cells, which licenses them for migration to lymph nodes to exert their homeostatic tolerogenic function. Our results show that cell shape changes experienced by immune cells can define their migratory behavior and immunoregulatory properties, revealing the contribution of the physical properties of tissues to the balance between tolerance and immunity.</p

    Macropinocytosis Overcomes Directional Bias in Dendritic Cells Due to Hydraulic Resistance and Facilitates Space Exploration

    No full text
    International audienceThe migration of immune cells can be guided by physical cues imposed by the environment, such as geometry, rigidity, or hydraulic resistance (HR). Neutrophils preferentially follow paths of least HR in vitro, a phenomenon known as barotaxis. The mechanisms and physiological relevance of barotaxis remain unclear. We show that barotaxis results from the amplification of a small force imbalance by the actomyosin cytoskeleton, resulting in biased directional choices. In immature dendritic cells (DCs), actomyosin is recruited to the cell front to build macropinosomes. These cells are therefore insensitive to HR, as macropinocytosis allows fluid transport across these cells. This may enhance their space exploration capacity in vivo. Conversely, mature DCs down-regulate macropinocytosis and are thus barotactic. Modeling suggests that HR may help guide these cells to lymph nodes where they initiate immune responses. Hence, DCs can either overcome or capitalize on the physical obstacles they encounter, helping their immune-surveillance function

    A Shape Sensing Mechanism driven by Arp2/3 and cPLA 2 licenses Dendritic Cells for Migration to Lymph Nodes in Homeostasis

    No full text
    Motile cells such as immune and cancer cells experience large deformation events that result from the physical constraints they encounter while migrating within tissues or circulating between organs. It has become increasingly clear that these cells can survive and adapt to these changes in cell shape using dedicated shape sensing pathways. However, how shape sensing impacts their function and fate remains largely unknown. Here we identify a shape sensing mechanism that couples cell motility to expression of CCR7, the chemokine receptor that guides immune cells to lymph nodes. We found that this mechanism is controlled by the lipid metabolism enzyme cPLA 2 , requires an intact nuclear envelop and exhibits an exquisitely sensitive activation threshold tuned by ARP2/3 and its inhibitor Arpin. We further show that shape sensing through the ARP2/3-cPLA 2 axis controls IkkÎČ-NFÎșB-dependent transcriptional reprogramming of dendritic cells, which instructs them to migrate to lymph nodes in an immunoregulatory state compatible with their homeostatic tolerogenic function. These results highlight that the cell shape changes experienced by motile cells evolving within the complex environment of tissues can dictate their behavior and fate
    corecore