94 research outputs found

    Nematode migration and nutrient diffusion between vetch and barley material in soil

    Get PDF
    This paper deals with migration of nematodes along nutrient gradients in soil. Portions of barley straw and green vetch leaves were mixed with soil and buried at 6, 12, 18, and 50mm distance from each other in soil. During the following 12 weeks respiration activity, microbial (SIR) biomass, nitrogen limitation of respiration activity in soil slurries all indicated that nitrogen was transferred in the soil from the nutrient rich vetch to the nutrient poor barley at least during the first 3 weeks of the experiment. Twelve out of 39 taxonomic groups of nematodes showed different growth in the two plant material-soil mixtures. Only one of these taxonomic groups (long rhabditid larvae) suggested that migration could have contributed to population development; for three other groups (short rhabditid larvae, Aphelenchoides, and Bursilla) nutrient transport through the soil was the likely mechanism for a distance-dependant population development. We suggest that for most microbivorous nematodes, except larvae of fast growing bacterivores, migration over distances exceeding one centimetre does not contribute markedly to population development even when cues such as nutrient gradients to stimulate the activity exis

    Reaktive Benetzungsphänomene am Beispiel der Si(1)/SiO2(s) Grenzfläche

    Get PDF
    [no abstract

    The influence of crystallographic orientation on the wetting of silicon on quartz single crystals

    Get PDF
    Dynamic hexagonal spreading patterns of small silicon droplets on the basal plane (001) of quartz were observed by video microscopy. A detailed analysis of the hexagonal triple line demonstrates that the patterns show slight chiral distortions that can be attributed to the screw axis of the substrate crystal. This article reveals the detailed influence of crystal symmetry on the anisotropy of reactive wetting. In this context, a first discussion about the interplay of wetting and etching of a crystal is provided

    Techniques for Arbuscular Mycorrhiza Inoculum Reduction

    Get PDF
    It is well established that arbuscular mycorrhizal (AM) fungi can play a significant role in sustainable crop production and environmental conservation. With the increasing awareness of the ecological significance of mycorrhizas and their diversity, research needs to be directed away from simple records of their occurrence or casual speculation of their function (Smith and Read 1997). Rather, the need is for empirical studies and investigations of the quantitative aspects of the distribution of different types and their contribution to the function of ecosystems. There is no such thing as a fungal effect or a plant effect, but there is an interaction between both symbionts. This results from the AM fungi and plant community size and structure, soil and climatic conditions, and the interplay between all these factors (Kahiluoto et al. 2000). Consequently, it is readily understood that it is the problems associated with methodology that limit our understanding of the functioning and effects of AM fungi within field communities. Given the ubiquous presence of AM fungi, a major constraint to the evaluation of the activity of AM colonisation has been the need to account for the indigenous soil native inoculum. This has to be controlled (i.e. reduced or eliminated) if we are to obtain a true control treatment for analysis of arbuscular mycorrhizas in natural substrates. There are various procedures possible for achieving such an objective, and the purpose of this chapter is to provide details of a number of techniques and present some evaluation of their advantages and disadvantages. Although there have been a large number of experiments to investigated the effectiveness of different sterilization procedures for reducing pathogenic soil fungi, little information is available on their impact on beneficial organisms such as AM fungi. Furthermore, some of the techniques have been shown to affect physical and chemical soil characteristics as well as eliminate soil microorganisms that can interfere with the development of mycorrhizas, and this creates difficulties in the interpretation of results simply in terms of possible mycorrhizal activity. An important subject is the differentiation of methods that involve sterilization from those focussed on indigenous inoculum reduction. Soil sterilization aims to destroy or eliminate microbial cells while maintaining the existing chemical and physical characteristics of the soil (Wolf and Skipper 1994). Consequently, it is often used for experiments focussed on specific AM fungi, or to establish a negative control in some other types of study. In contrast, the purpose of inoculum reduction techniques is to create a perturbation that will interfere with mycorrhizal formation, although not necessarily eliminating any component group within the inoculum. Such an approach allows the establishment of different degrees of mycorrhizal formation between treatments and the study of relative effects. Frequently the basic techniques used to achieve complete sterilization or just an inoculum reduction may be similar but the desired outcome is accomplished by adjustments of the dosage or intensity of the treatment. The ultimate choice of methodology for establishing an adequate non-mycorrhizal control depends on the design of the particular experiments, the facilities available and the amount of soil requiring treatment
    corecore