29 research outputs found

    Towards the molecular design of hydrotreating catalysts prepared with metallo-organic precursors

    No full text
    L'enjeu de cette thĂšse rĂ©side dans la comprĂ©hension et l'amĂ©lioration de la sulfuration de catalyseurs Ă  base de W. Elle a pour objectif la rationalisation des diffĂ©rentes Ă©tapes de prĂ©paration de catalyseurs d’hydrotraitement de type NiWS depuis la prĂ©paration jusqu'au test catalytique par une approche molĂ©culaire (appelĂ©e «chimie de surface contrĂŽlĂ©e» ou CSC), ce qui permet de proposer de nouvelles voies pour lever le verrou majeur, liĂ© Ă  la mauvaise sulfuration du W. Au cƓur de cette approche se situe l'utilisation d'une mĂ©thode de prĂ©paration originale, ayant recours Ă  des composĂ©s molĂ©culaires mĂ©tallo-organiques bien-dĂ©finis comme prĂ©curseurs de la phase sulfurĂ©e WS2, combinĂ©e Ă  une analyse poussĂ©e par spectroscopies multiples (IR, RMN, XPS) et chimie computationnelle.La famille des alcoxydes de tungstĂšne a Ă©tĂ© sĂ©lectionnĂ©e ; les prĂ©curseurs mono ou di-nuclĂ©aires tels que W(OEt)6, [W(=O)(OEt)4]2 ou [W(OEt)5]2 ont Ă©tĂ© greffĂ©s sur silice-alumine partiellement deshydroxylĂ©e, et leur conversion en phase sulfure a montrĂ© que le type de prĂ©curseurs molĂ©culaires influençaient peu les propriĂ©tĂ©s des catalyseurs non promus (WS2/ASA), en termes de taux de sulfuration (dĂ©terminĂ© par XPS) ou d’activitĂ© catalytique, en hydrogĂ©nation du toluĂšne en prĂ©sence d’aniline. Le composĂ© [W(OEt)5]2 a ensuite Ă©tĂ© sĂ©lectionnĂ© pour approfondir l’étude des catalyseurs prĂ©parĂ©s par CSC.L'approche visant Ă  amĂ©liorer la comprĂ©hension des diffĂ©rentes espĂšces de surface formĂ©es a Ă©tĂ© rĂ©alisĂ©e par l'Ă©tude des matĂ©riaux avant et aprĂšs sulfuration. L'augmentation de la quantitĂ© de W dĂ©posĂ© sur les matĂ©riaux CSC a permis de rĂ©vĂ©ler la formation de (1) une couche d’espĂšces greffĂ©es sur la surface de silice-alumine, puis (2) de couches successives, formĂ©es d'espĂšces plus mobiles. L'Ă©tude portant sur la sulfuration de ces matĂ©riaux en fonction de leur teneur en W, et de la tempĂ©rature de sulfuration, a permis de les comparer aux catalyseurs sulfurĂ©s dits «conventionnels». Cette Ă©tude approfondie a mis en Ă©vidence une amĂ©lioration de la sulfuration du W pour les matĂ©riaux CSC aux tempĂ©ratures habituellement utilisĂ©es (350°C). La vitesse intrinsĂšque d’hydrogĂ©nation des catalyseurs CSC, jusqu’à deux fois supĂ©rieure Ă  celle des catalyseurs conventionnels, a en partie Ă©tĂ© expliquĂ©e par un meilleur taux de sulfuration, et par la morphologie 2D des feuillets WS2 (STEM-HAADF), de forme triangulaire tronquĂ©e, dans le cas d’un catalyseur conventionnel.Finalement, ayant dĂ©montrĂ© que l’emploi d’espĂšces molĂ©culaires mono et binuclĂ©aires permettait d’amĂ©liorer les catalyseurs non promus par rapport Ă  l’approche conventionnelle utilisant des clusters polyanioniques, les catalyseurs promus de type NiW/ASA ont Ă©tĂ© Ă©tudiĂ©s. DiffĂ©rents prĂ©curseurs ont Ă©tĂ© utilisĂ©s (par exemple Ni(acac)2) ainsi que diffĂ©rentes mĂ©thodes de dĂ©pĂŽt (dĂ©pĂŽt du nickel sur un matĂ©riau sulfurĂ©, ou non) et quantitĂ©s de nickel. Ces travaux ont permis d’estimer l’influence de ces paramĂštres sur la sulfurabilitĂ© du W et du Ni, ainsi que sur l’activitĂ© catalytique des catalyseurs, et montrer que l’emploi d'une approche molĂ©culaire dans la prĂ©paration des phases NiWS supportĂ©es permet d’amĂ©liorer la promotion des feuillets sulfures par le nickel, mais aussi d'accĂ©der Ă  des catalyseurs pouvant avoir des vitesses intrinsĂšques d’hydrogĂ©nation quatre fois supĂ©rieures celles de catalyseurs conventionnelles de rĂ©fĂ©rence. Ces rĂ©sultats catalytiques sont trĂšs probablement liĂ©s Ă  une balance optimisĂ©e entre «nature» et «quantité» de sites actifs mixtes Ni-W. Cela dĂ©montre l’intĂ©rĂȘt d’une approche molĂ©culaire pour la prĂ©paration de catalyseurs d'hydrotraitement plus performants.The aim of this thesis is to understand and improve the sulphidation of W-based hydrotreating catalysts by understanding and characterising each step of their preparation, from the synthesis to catalytic tests, via a controlled surface chemistry approach (or "CSC", also referred as surface organometallic chemistry, "SOMC", in the literature). This molecular approach opens new avenues for the improvement of W sulphidation, which is one strong limitation for using this metal in hydrotreatment. The core of this study is based on the use of well-defined metallo-organic precursors as precursors of the tungsten sulphide phase, each step of materials preparation being characterised by multiple spectroscopy techniques (IR, NMR, XPS) combined with ab initio molecular modelling.Mono or dinuclear tungsten alkoxides such as [W(OEt)5]2, W(OEt)6 or [W(=O)(OEt)4]2 were grafted on partially dehydroxylated amorphous silica-alumina. Their conversion into sulphide materials reveals that the precursor does not influence significantly the amount of WS2 phase formed (level of sulphidation observed by XPS) as well as catalytic properties in toluene hydrogenation in the presence of aniline. Only [W(OEt)5]2 was used in the following experiments.So as to better understand the genesis of the sulphide phase, CSC materials were characterised before and after sulphidation. Before sulphidation, the use of increasing amounts of W precursor reveals the formation of (1) first, a layer of tungsten surface species grafted on the surface, and (2) second, layers of more mobile species, more loosely bonded to the grafted species. Then, these CSC materials were sulphided into WS2 catalysts (with different W-loading, and different sulphidation temperatures) and were compared to conventionally prepared samples. The results reveal an improvement of tungsten sulphidation for CSC samples already at ambient sulphidation temperature and also at more usual sulphidation temperatures (350°C). Catalytic activities up to 2 times higher than conventional references were also obtained. They are explained in part by the better level of sulphidation of CSC samples and by a different 2D morphology of WS2 crystallites (STEM-HAADF), observed to be hexagonal-like for CSC samples while conventional ones have truncated triangle-like shapes.Then, as non-promoted CSC samples were more active than their conventional counterparts, nickel promoted catalysts (NiWS) were prepared, with the use of different Ni precursors (such as Ni(acac)2), different preparation methods and Ni amounts. This study gives insights into the sulphidation of W and Ni, and reveals that samples prepared via a molecular approach (CSC) can exhibit intrinsic hydrogenation rates up to four times higher than reference catalysts. These results are explained by an optimal balance between the nature of active Ni-W mixed sites and their amount. These interesting results, obtained for non-promoted and Ni-promoted catalysts, show that the use of a molecular approach is suitable to design highly active hydrotreating catalysts

    Vers la conception moléculaire de catalyseurs d'hydrotraitement préparés à partir de précurseurs métallo-organiques

    No full text
    The aim of this thesis is to understand and improve the sulphidation of W-based hydrotreating catalysts by understanding and characterising each step of their preparation, from the synthesis to catalytic tests, via a controlled surface chemistry approach (or "CSC", also referred as surface organometallic chemistry, "SOMC", in the literature). This molecular approach opens new avenues for the improvement of W sulphidation, which is one strong limitation for using this metal in hydrotreatment. The core of this study is based on the use of well-defined metallo-organic precursors as precursors of the tungsten sulphide phase, each step of materials preparation being characterised by multiple spectroscopy techniques (IR, NMR, XPS) combined with ab initio molecular modelling.Mono or dinuclear tungsten alkoxides such as [W(OEt)5]2, W(OEt)6 or [W(=O)(OEt)4]2 were grafted on partially dehydroxylated amorphous silica-alumina. Their conversion into sulphide materials reveals that the precursor does not influence significantly the amount of WS2 phase formed (level of sulphidation observed by XPS) as well as catalytic properties in toluene hydrogenation in the presence of aniline. Only [W(OEt)5]2 was used in the following experiments.So as to better understand the genesis of the sulphide phase, CSC materials were characterised before and after sulphidation. Before sulphidation, the use of increasing amounts of W precursor reveals the formation of (1) first, a layer of tungsten surface species grafted on the surface, and (2) second, layers of more mobile species, more loosely bonded to the grafted species. Then, these CSC materials were sulphided into WS2 catalysts (with different W-loading, and different sulphidation temperatures) and were compared to conventionally prepared samples. The results reveal an improvement of tungsten sulphidation for CSC samples already at ambient sulphidation temperature and also at more usual sulphidation temperatures (350°C). Catalytic activities up to 2 times higher than conventional references were also obtained. They are explained in part by the better level of sulphidation of CSC samples and by a different 2D morphology of WS2 crystallites (STEM-HAADF), observed to be hexagonal-like for CSC samples while conventional ones have truncated triangle-like shapes.Then, as non-promoted CSC samples were more active than their conventional counterparts, nickel promoted catalysts (NiWS) were prepared, with the use of different Ni precursors (such as Ni(acac)2), different preparation methods and Ni amounts. This study gives insights into the sulphidation of W and Ni, and reveals that samples prepared via a molecular approach (CSC) can exhibit intrinsic hydrogenation rates up to four times higher than reference catalysts. These results are explained by an optimal balance between the nature of active Ni-W mixed sites and their amount. These interesting results, obtained for non-promoted and Ni-promoted catalysts, show that the use of a molecular approach is suitable to design highly active hydrotreating catalysts.L'enjeu de cette thĂšse rĂ©side dans la comprĂ©hension et l'amĂ©lioration de la sulfuration de catalyseurs Ă  base de W. Elle a pour objectif la rationalisation des diffĂ©rentes Ă©tapes de prĂ©paration de catalyseurs d’hydrotraitement de type NiWS depuis la prĂ©paration jusqu'au test catalytique par une approche molĂ©culaire (appelĂ©e «chimie de surface contrĂŽlĂ©e» ou CSC), ce qui permet de proposer de nouvelles voies pour lever le verrou majeur, liĂ© Ă  la mauvaise sulfuration du W. Au cƓur de cette approche se situe l'utilisation d'une mĂ©thode de prĂ©paration originale, ayant recours Ă  des composĂ©s molĂ©culaires mĂ©tallo-organiques bien-dĂ©finis comme prĂ©curseurs de la phase sulfurĂ©e WS2, combinĂ©e Ă  une analyse poussĂ©e par spectroscopies multiples (IR, RMN, XPS) et chimie computationnelle.La famille des alcoxydes de tungstĂšne a Ă©tĂ© sĂ©lectionnĂ©e ; les prĂ©curseurs mono ou di-nuclĂ©aires tels que W(OEt)6, [W(=O)(OEt)4]2 ou [W(OEt)5]2 ont Ă©tĂ© greffĂ©s sur silice-alumine partiellement deshydroxylĂ©e, et leur conversion en phase sulfure a montrĂ© que le type de prĂ©curseurs molĂ©culaires influençaient peu les propriĂ©tĂ©s des catalyseurs non promus (WS2/ASA), en termes de taux de sulfuration (dĂ©terminĂ© par XPS) ou d’activitĂ© catalytique, en hydrogĂ©nation du toluĂšne en prĂ©sence d’aniline. Le composĂ© [W(OEt)5]2 a ensuite Ă©tĂ© sĂ©lectionnĂ© pour approfondir l’étude des catalyseurs prĂ©parĂ©s par CSC.L'approche visant Ă  amĂ©liorer la comprĂ©hension des diffĂ©rentes espĂšces de surface formĂ©es a Ă©tĂ© rĂ©alisĂ©e par l'Ă©tude des matĂ©riaux avant et aprĂšs sulfuration. L'augmentation de la quantitĂ© de W dĂ©posĂ© sur les matĂ©riaux CSC a permis de rĂ©vĂ©ler la formation de (1) une couche d’espĂšces greffĂ©es sur la surface de silice-alumine, puis (2) de couches successives, formĂ©es d'espĂšces plus mobiles. L'Ă©tude portant sur la sulfuration de ces matĂ©riaux en fonction de leur teneur en W, et de la tempĂ©rature de sulfuration, a permis de les comparer aux catalyseurs sulfurĂ©s dits «conventionnels». Cette Ă©tude approfondie a mis en Ă©vidence une amĂ©lioration de la sulfuration du W pour les matĂ©riaux CSC aux tempĂ©ratures habituellement utilisĂ©es (350°C). La vitesse intrinsĂšque d’hydrogĂ©nation des catalyseurs CSC, jusqu’à deux fois supĂ©rieure Ă  celle des catalyseurs conventionnels, a en partie Ă©tĂ© expliquĂ©e par un meilleur taux de sulfuration, et par la morphologie 2D des feuillets WS2 (STEM-HAADF), de forme triangulaire tronquĂ©e, dans le cas d’un catalyseur conventionnel.Finalement, ayant dĂ©montrĂ© que l’emploi d’espĂšces molĂ©culaires mono et binuclĂ©aires permettait d’amĂ©liorer les catalyseurs non promus par rapport Ă  l’approche conventionnelle utilisant des clusters polyanioniques, les catalyseurs promus de type NiW/ASA ont Ă©tĂ© Ă©tudiĂ©s. DiffĂ©rents prĂ©curseurs ont Ă©tĂ© utilisĂ©s (par exemple Ni(acac)2) ainsi que diffĂ©rentes mĂ©thodes de dĂ©pĂŽt (dĂ©pĂŽt du nickel sur un matĂ©riau sulfurĂ©, ou non) et quantitĂ©s de nickel. Ces travaux ont permis d’estimer l’influence de ces paramĂštres sur la sulfurabilitĂ© du W et du Ni, ainsi que sur l’activitĂ© catalytique des catalyseurs, et montrer que l’emploi d'une approche molĂ©culaire dans la prĂ©paration des phases NiWS supportĂ©es permet d’amĂ©liorer la promotion des feuillets sulfures par le nickel, mais aussi d'accĂ©der Ă  des catalyseurs pouvant avoir des vitesses intrinsĂšques d’hydrogĂ©nation quatre fois supĂ©rieures celles de catalyseurs conventionnelles de rĂ©fĂ©rence. Ces rĂ©sultats catalytiques sont trĂšs probablement liĂ©s Ă  une balance optimisĂ©e entre «nature» et «quantité» de sites actifs mixtes Ni-W. Cela dĂ©montre l’intĂ©rĂȘt d’une approche molĂ©culaire pour la prĂ©paration de catalyseurs d'hydrotraitement plus performants

    Ethoxy and silsesquioxane derivatives of antimony as dopant precursors: unravelling the structure and thermal stability of surface species on SiO2

    No full text
    International audienceWe report here the controlled preparation of SiO2 supported Sb-(mono)layers and their thorough characterization by in situ IR, solid-state NMR and elemental analyses. This study allows for the molecular understanding of the surface Sb species derived from the grafting of ethoxy and polyhedral oligomeric silsesquioxane antimony derivatives as mono- or bi-podal Sb(III) surface species depending on the number of surface SiOH groups. This result is different from what was observed with the phosphorus analogue (POSS-P) that yielded P(V) species. A monolayer coverage of Sb species onto silica was also obtained using both POSS-Sb and the [Sb(OEt)3]2 derivative with surface densities ranging from ∌0.3 Sb nm−2 to 1.8 Sb nm−2, respectively. It is noteworthy that under optimized conditions, a layer of antimony species or suboxides on silica was produced using POSS-Sb without significant Sb loss, highlighting the protective properties of the POSS cage. These results open new perspectives for the controlled and non-destructive Sb-doping (Molecular Layer Doping) of semiconductors dedicated to nano-device applications

    Shallow Heavily Doped n\mathplus\mathplus Germanium by Organo-Antimony Monolayer Doping

    No full text
    International audienceFunctionalization of Ge surfaces with the aim of incorporating specific dopant atoms to form high-quality junctions is of particular importance for the development of solid-state devices. In this study, we report the shallow doping of Ge wafers with a monolayer doping strategy that is based on the controlled grafting of Sb precursors and the subsequent diffusion of Sb into the wafer upon annealing. We also highlight the key role of citric acid in passivating the surface before its reaction with the Sb precursors and the benefit of a protective SiO2 overlayer that enables an efficient incorporation of Sb dopants with a concentration higher than 1020 cm–3. Microscopic four-point probe measurements and photoconductivity experiments show the full electrical activation of the Sb dopants, giving rise to the formation of an n++ Sb-doped layer and an enhanced local field-effect passivation at the surface of the Ge wafer

    Highly Active Nonpromoted Hydrotreating Catalysts through the Controlled Growth of a Supported Hexagonal WS<sub>2</sub> Phase

    No full text
    Highly active nonpromoted W-based hydrotreating catalysts are prepared through a molecular approach with a control of each step. This approach yields WS<sub>2</sub> crystallites exhibiting hexagonal 2D morphology, which have been characterized by combining XPS and HR HAADF-STEM techniques and ab initio molecular modeling. The first step is the impregnation of a well-defined precursor, [W­(OEt)<sub>5</sub>]<sub>2</sub>, grafted onto partially dehydroxylated amorphous silica–alumina (ASA) and characterized at the molecular level by spectroscopic techniques (NMR and IR). The use of increasing amounts of W precursor reveals the formation of (i) a layer of tungsten surface species grafted on the surface and (ii) layers of more mobile adsorbed species loosely bonded to the surface. Sulfidation of these materials provides WS<sub>2</sub> supported on ASA, which shows unprecedented lower sulfidation temperatures down to ambient temperature and improved activity by comparison with conventional references (polyoxometalate route). In addition, these improved activities are explained not only by a better level of sulfidation but also by the 2D hexagonal-like morphology of WS<sub>2</sub> crystallites (revealed by HR HAADF-STEM), in contrast to a truncated triangle-like morphology for conventional samples. This molecular approach thus opens new avenues to understand and improve the performances of hydrotreating catalysts

    Monolayer doping of silicon through grafting a tailored molecular phosphorus precursor onto cxide-passivated silicon surfaces

    Get PDF
    The authors thank S. Deleonibus (DRT/LETI), M. Sanquer (DSM/INAC), and L. Vandroux (DRT/LETI) for their continuous support, as well as V. Loup, P. Besson, M. Danielou, S. Kerdiles, A. Andre, L. Andreutti, and J.P. Barnes from CEA/LETI/Minatec; and K. Szeto from C2P2-LCOMS. ETH Zurich, CPE Lyon and UCBL are also acknowledged for their scientific support and the access to the process and characterization facilities.International audienceMonolayer doping (MLD) of silicon substrates at the nanoscale is a powerful method to provide controlled doses of dopants and defect-free materials. However, this approach requires the deposition of a thick SiO2 cap layer to limit dopant evaporation during annealing. Here, we describe the controlled surface doping of thin oxide-passivated silicon wafers through a two-step process involving the grafting of a molecular phosphorus precursor containing a polyhedral oligomeric silsesquioxane (POSS) scaffold with silica-like architecture and thermal annealing. We show that the POSS scaffold favors the controlled formation of dopant-containing surface species with up to similar to 8 x 10(13) P atoms cm(-2) and efficiently avoids phosphorus evaporation during annealing for temperatures up to 800 degrees C. Silicon doping is demonstrated, in particular, by grafting the POSS phosphorus triester on SiO2/Si wafers with optimized surface preparation (thin SiO2 layer of 0.7 nm) and annealing temperature (1000 degrees C), which provides phosphorus doses of similar to 7 x 10(12) P atoms cm(-2) in the silicon substrates together with a decrease of their sheet resistance. A detailed study of the surface chemistry on SiO2 nanoparticles used as a high-surface-area model yields the grafting mechanism and the structure of the surface species. We show that the POSS scaffold is conserved upon grafting, that its size controls the final P-surface density, and that it behaves as a self-protecting ligand against phosphorus volatilization during the annealing step. We thus demonstrate that the use of custom-made dopant precursors with self-capping properties is a promising approach to tune medium to low doping doses in technologically relevant semiconductors
    corecore