10 research outputs found

    A Study of the Near-Ultraviolet Spectrum of Vega

    Full text link
    UV, optical, and near-IR spectra of Vega have been combined to test our understanding of stellar atmospheric opacities, and to examine the possibility of constraining chemical abundances from low-resolution UV fluxes. We have carried out a detailed analysis assuming Local Thermodynamic Equilibrium (LTE) to identify the most important contributors to the UV continuous opacity: H, H−^{-}, C I, and Si II. Our analysis also assumes that Vega is spherically symmetric and its atmosphere is well described with the plane parallel approximation. Comparing observations and computed fluxes we have been able to discriminate between two different flux scales that have been proposed, the IUE-INES and the HST scales, favoring the latter. The effective temperature and angular diameter derived from the analysis of observed optical and near-UV spectra are in very good agreement with previous determinations based on different techniques. The silicon abundance is poorly constrained by the UV observations of the continuum and strong lines, but the situation is more favorable for carbon and the abundances inferred from the UV continuum and optical absorption lines are in good agreement. Some spectral intervals in the UV spectrum of Vega that the calculations do not reproduce well are likely affected by deviations from LTE, but we conclude that our understanding of UV atmospheric opacities is fairly complete for early A-type stars.Comment: 13 pages, 9 figures, to be published in Ap

    Project overview and update on WEAVE: the next generation wide-field spectroscopy facility for the William Herschel Telescope

    Get PDF
    We present an overview of and status report on the WEAVE next-generation spectroscopy facility for the William Herschel Telescope (WHT). WEAVE principally targets optical ground-based follow up of upcoming ground-based (LOFAR) and space-based (Gaia) surveys. WEAVE is a multi-object and multi-IFU facility utilizing a new 2-degree prime focus field of view at the WHT, with a buffered pick-and-place positioner system hosting 1000 multi-object (MOS) fibres, 20 integral field units, or a single large IFU for each observation. The fibres are fed to a single spectrograph, with a pair of 8k(spectral) x 6k (spatial) pixel cameras, located within the WHT GHRIL enclosure on the telescope Nasmyth platform, supporting observations at R~5000 over the full 370-1000nm wavelength range in a single exposure, or a high resolution mode with limited coverage in each arm at R~20000. The project is now in the final design and early procurement phase, with commissioning at the telescope expected in 2017.Comment: 11 pages, 11 Figures, Summary of a presentation to Astronomical Telescopes and Instrumentation 201

    Familial hypercholesterolaemia in children and adolescents from 48 countries: a cross-sectional study

    Get PDF
    Background: Approximately 450 000 children are born with familial hypercholesterolaemia worldwide every year, yet only 2·1% of adults with familial hypercholesterolaemia were diagnosed before age 18 years via current diagnostic approaches, which are derived from observations in adults. We aimed to characterise children and adolescents with heterozygous familial hypercholesterolaemia (HeFH) and understand current approaches to the identification and management of familial hypercholesterolaemia to inform future public health strategies. Methods: For this cross-sectional study, we assessed children and adolescents younger than 18 years with a clinical or genetic diagnosis of HeFH at the time of entry into the Familial Hypercholesterolaemia Studies Collaboration (FHSC) registry between Oct 1, 2015, and Jan 31, 2021. Data in the registry were collected from 55 regional or national registries in 48 countries. Diagnoses relying on self-reported history of familial hypercholesterolaemia and suspected secondary hypercholesterolaemia were excluded from the registry; people with untreated LDL cholesterol (LDL-C) of at least 13·0 mmol/L were excluded from this study. Data were assessed overall and by WHO region, World Bank country income status, age, diagnostic criteria, and index-case status. The main outcome of this study was to assess current identification and management of children and adolescents with familial hypercholesterolaemia. Findings: Of 63 093 individuals in the FHSC registry, 11 848 (18·8%) were children or adolescents younger than 18 years with HeFH and were included in this study; 5756 (50·2%) of 11 476 included individuals were female and 5720 (49·8%) were male. Sex data were missing for 372 (3·1%) of 11 848 individuals. Median age at registry entry was 9·6 years (IQR 5·8-13·2). 10 099 (89·9%) of 11 235 included individuals had a final genetically confirmed diagnosis of familial hypercholesterolaemia and 1136 (10·1%) had a clinical diagnosis. Genetically confirmed diagnosis data or clinical diagnosis data were missing for 613 (5·2%) of 11 848 individuals. Genetic diagnosis was more common in children and adolescents from high-income countries (9427 [92·4%] of 10 202) than in children and adolescents from non-high-income countries (199 [48·0%] of 415). 3414 (31·6%) of 10 804 children or adolescents were index cases. Familial-hypercholesterolaemia-related physical signs, cardiovascular risk factors, and cardiovascular disease were uncommon, but were more common in non-high-income countries. 7557 (72·4%) of 10 428 included children or adolescents were not taking lipid-lowering medication (LLM) and had a median LDL-C of 5·00 mmol/L (IQR 4·05-6·08). Compared with genetic diagnosis, the use of unadapted clinical criteria intended for use in adults and reliant on more extreme phenotypes could result in 50-75% of children and adolescents with familial hypercholesterolaemia not being identified. Interpretation: Clinical characteristics observed in adults with familial hypercholesterolaemia are uncommon in children and adolescents with familial hypercholesterolaemia, hence detection in this age group relies on measurement of LDL-C and genetic confirmation. Where genetic testing is unavailable, increased availability and use of LDL-C measurements in the first few years of life could help reduce the current gap between prevalence and detection, enabling increased use of combination LLM to reach recommended LDL-C targets early in life

    Final design and progress of WEAVE:The next generation wide-field spectroscopy facility for the William Herschel Telescope

    Get PDF
    We present the Final Design of the WEAVE next-generation spectroscopy facility for the William Herschel Telescope (WHT), together with a status update on the details of manufacturing, integration and the overall project schedule now that all the major fabrication contracts are in place. We also present a summary of the current planning behind the 5-year initial phase of survey operations. WEAVE will provide optical ground-based follow up of ground-based (LOFAR) and space-based (Gaia) surveys. WEAVE is a multi-object and multi-IFU facility utilizing a new 2-degree prime focus field of view at the WHT, with a buffered pick-and-place positioner system hosting 1000 multi-object (MOS) fibres, 20 integral field units, or a single large IFU for each observation. The fibres are fed to a single (dual-beam) spectrograph, with total of 16k spectral pixels, located within the WHT GHRIL enclosure on the telescope Nasmyth platform, supporting observations at R 5000 over the full 370-1000nm wavelength range in a single exposure, or a high resolution mode with limited coverage in each arm at R 20000. The project is now in the manufacturing and integration phase with first light expected for early of 2018

    Integration and early testing of WEAVE: the next-generation spectroscopy facility for the William Herschel Telescope

    No full text
    We present an update on the overall integration progress of the WEAVE next-generation spectroscopy facility for the William Herschel Telescope (WHT), now scheduled for first light in early-2021, with almost all components now arrived at the observatory. We also present a summary of the current planning behind the 5-year initial phase of survey operations, and some detailed end-to-end science simulations that have been implemented to evaluate the final on-sky performance after data processing. WEAVE will provide optical ground-based follow up of ground-based (LOFAR) and space-based (Gaia) surveys. WEAVE is a multi-object and multi-IFU facility utilizing a new 2-degree prime focus field of view at the WHT, with a buffered pick-and-place positioner system hosting 1000 multi-object (MOS) fibres, 20 mini integral field units, or a single large IFU for each observation. The fibres are fed to a single (dual-beam) spectrograph, with total of 16k spectral pixels, located within the WHT GHRIL enclosure on the telescope Nasmyth platform, supporting observations at R~5000 over the full 370-1000nm wavelength range in a single exposure, or a high resolution mode with limited coverage in each arm at R~20000

    Prevalence of reduced lung diffusing capacity and CT scan findings in smokers without airflow limitation: a population-based study

    No full text
    Background Population distribution of reduced diffusing capacity of the lungs for carbon monoxide (DLCO) in smokers and main consequences are not properly recognised. The objectives of this study were to describe the prevalence of reduced DLCO in a population-based sample of current and former smoker subjects without airflow limitation and to describe its morphological, functional and clinical implications.Methods A sample of 405 subjects aged 40 years or older with postbronchodilator forced expiratory volume in 1 s/forced vital capacity (FVC) >0.70 was obtained from a random population-based sample of 9092 subjects evaluated in the EPISCAN II study. Baseline evaluation included clinical questionnaires, exhaled carbon monoxide (CO) measurement, spirometry, DLCO determination, 6 min walk test, routine blood analysis and low-dose CT scan with evaluation of lung density and airway wall thickness.Results In never, former and current smokers, prevalence of reduced DLCO was 6.7%, 14.4% and 26.7%, respectively. Current and former smokers with reduced DLCO without airflow limitation were younger than the subjects with normal DLCO, and they had greater levels of dyspnoea and exhaled CO, greater pulmonary artery diameter and lower spirometric parameters, 6 min walk distance, daily physical activity and plasma albumin levels (all p<0.05), with no significant differences in other chronic respiratory symptoms or CT findings. FVC and exhaled CO were identified as independent risk factors for low DLCO.Conclusion Reduced DLCO is a frequent disorder among smokers without airflow limitation, associated with decreased exercise capacity and with CT findings suggesting that it may be a marker of smoking-induced early vascular damage.Trial registration number NCT03028207

    Autoantibodies neutralizing type I IFNs are present in ~4% of uninfected individuals over 70 years old and account for ~20% of COVID-19 deaths

    No full text
    Circulating autoantibodies (auto-Abs) neutralizing high concentrations (10 ng/ml; in plasma diluted 1:10) of IFN-α and/or IFN-ω are found in about 10% of patients with critical COVID-19 (coronavirus disease 2019) pneumonia but not in individuals with asymptomatic infections. We detect auto-Abs neutralizing 100-fold lower, more physiological, concentrations of IFN-α and/or IFN-ω (100 pg/ml; in 1:10 dilutions of plasma) in 13.6% of 3595 patients with critical COVID-19, including 21% of 374 patients >80 years, and 6.5% of 522 patients with severe COVID-19. These antibodies are also detected in 18% of the 1124 deceased patients (aged 20 days to 99 years; mean: 70 years). Moreover, another 1.3% of patients with critical COVID-19 and 0.9% of the deceased patients have auto-Abs neutralizing high concentrations of IFN-ÎČ. We also show, in a sample of 34,159 uninfected individuals from the general population, that auto-Abs neutralizing high concentrations of IFN-α and/or IFN-ω are present in 0.18% of individuals between 18 and 69 years, 1.1% between 70 and 79 years, and 3.4% >80 years. Moreover, the proportion of individuals carrying auto-Abs neutralizing lower concentrations is greater in a subsample of 10,778 uninfected individuals: 1% of individuals 80 years. By contrast, auto-Abs neutralizing IFN-ÎČ do not become more frequent with age. Auto-Abs neutralizing type I IFNs predate SARS-CoV-2 infection and sharply increase in prevalence after the age of 70 years. They account for about 20% of both critical COVID-19 cases in the over 80s and total fatal COVID-19 cases
    corecore