17,383 research outputs found

    Complex dynamics of elementary cellular automata emerging from chaotic rules

    Get PDF
    We show techniques of analyzing complex dynamics of cellular automata (CA) with chaotic behaviour. CA are well known computational substrates for studying emergent collective behaviour, complexity, randomness and interaction between order and chaotic systems. A number of attempts have been made to classify CA functions on their space-time dynamics and to predict behaviour of any given function. Examples include mechanical computation, \lambda{} and Z-parameters, mean field theory, differential equations and number conserving features. We aim to classify CA based on their behaviour when they act in a historical mode, i.e. as CA with memory. We demonstrate that cell-state transition rules enriched with memory quickly transform a chaotic system converging to a complex global behaviour from almost any initial condition. Thus just in few steps we can select chaotic rules without exhaustive computational experiments or recurring to additional parameters. We provide analysis of well-known chaotic functions in one-dimensional CA, and decompose dynamics of the automata using majority memory exploring glider dynamics and reactions

    Phase diagram and influence of defects in the double perovskites

    Get PDF
    The phase diagram of the double perovskites of the type Sr_{2-x} La_x Fe Mo O_6 is analyzed, with and without disorder due to antisites. In addition to an homogeneous half metallic ferrimagnetic phase in the absence of doping and disorder, we find antiferromagnetic phases at large dopings, and other ferrimagnetic phases with lower saturation magnetization, in the presence of disorder.Comment: 4 pages, 3 postscript figures, some errata correcte

    On domain walls in a Ginzburg-Landau non-linear S^2-sigma model

    Get PDF
    The domain wall solutions of a Ginzburg-Landau non-linear S2S^2-sigma hybrid model are unveiled. There are three types of basic topological walls and two types of degenerate families of composite - one topological, the other non-topological- walls. The domain wall solutions are identified as the finite action trajectories (in infinite time) of a related mechanical system that is Hamilton-Jacobi separable in sphero-conical coordinates. The physical and mathematical features of these domain walls are thoroughly discussed.Comment: 26 pages, 18 figure

    Dynamics of zonal flow-like structures in the edge of the TJ-II stellarator

    Full text link
    The dynamics of fluctuating electric field structures in the edge of the TJ-II stellarator, that display zonal flow-like traits, is studied. These structures have been shown to be global and affect particle transport dynamically [J.A. Alonso et al., Nucl. Fus. 52 063010 (2012)]. In this article we discuss possible drive (Reynolds stress) and damping (Neoclassical viscosity, geodesic transfer) mechanisms for the associated ExB velocity. We show that: (a) while the observed turbulence-driven forces can provide the necessary perpendicular acceleration, a causal relation could not be firmly established, possibly because of the locality of the Reynolds stress measurements, (b) the calculated neoclassical viscosity and damping times are comparable to the observed zonal flow relaxation times, and (c) although an accompanying density modulation is observed to be associated to the zonal flow, it is not consistent with the excitation of pressure side-bands, like those present in geodesic acoustic oscillations, caused by the compression of the ExB flow field

    PREDICTING THE LONG-TERM PERFORMANCE OF STRUCTURES MADE WITH ADVANCED CEMENT BASED MATERIALS IN EXTREMELY AGGRESSIVE ENVIRONMENTS: CURRENT STATE OF PRACTICE AND RESEARCH NEEDS – THE APPROACH OF H2020 PROJECT RESHEALIENCE.

    Get PDF
    Recently, in the framework of H2020, the European Commission has funded the project ReSHEALience (www.uhdc.eu), whose main goal is to develop an Ultra High Durability Concrete (UHDC) and a Durability Assessment-based Design (DAD) methodology for structures, to improve durability and predict their long-term performance under Extremely Aggressive Exposures. The project, coordinated by Politecnico di Milano, gathers 14 partners from 8 different countries (Italy, Spain, Estonia, Germany, Greece, Ireland, Israel, Malta), including 6 academic and research institutions together with 8 industrial partners, which cover the whole value chain, from producers of concrete constituents to construction companies to stake-holders and end-users. A key activity of the project will consist in the development of a theoretical model to evaluate ageing and degradation of UHDC structures, extending the modelling to predict the lifespan, and its incorporation in a Durability Assessment-based Design (DAD) methodology, which will be validated against experimental tests performed in the same project and the monitored performance of six full-scale pilots in real exposure conditions. The paper, starting from a review of the current state of art on the modelling of advanced cement based materials in extremely aggressive environments (EAE), will address the approach pursued in the project

    Spin-orbit induced mixed-spin ground state in RRNiO3_3 perovskites probed by XAS: new insight into the metal to insulator transition

    Full text link
    We report on a Ni L2,3_{2,3} edges x-ray absorption spectroscopy (XAS) study in RRNiO3_3 perovskites. These compounds exhibit a metal to insulator (MIMI) transition as temperature decreases. The L3_{3} edge presents a clear splitting in the insulating state, associated to a less hybridized ground state. Using charge transfer multiplet calculations, we establish the importance of the crystal field and 3d spin-orbit coupling to create a mixed-spin ground state. We explain the MIMI transition in RRNiO3_3 perovskites in terms of modifications in the Ni3+^{3+} crystal field splitting that induces a spin transition from an essentially low-spin (LS) to a mixed-spin state.Comment: 4 pages, 4 figures, accepted as PRB - Rapid Comm. Dez. 200

    First order transition and phase separation in pyrochlores with colossal-magnetoresistance

    Full text link
    Tl2_{2}Mn2_{2}O7_{7} pyrochlores present colossal magnetoresistance (CMR) around the long range ferromagnetic ordering temperature (TC_{C}). The character of this magnetic phase transition has been determined to be first order, by purely magnetic methods, in contrast to the second order character previously reported by Zhao et al. (Phys. Rev. Lett. 83, 219 (1999)). The highest CMR effect, as in Tl1.8_{1.8}Cd0.2_{0.2}Mn2_{2}O7_{7}, corresponds to a stronger first order character. This character implies a second type of magnetic interaction, besides the direct superexchange between the Mn4+^{4+} ions, as well as a phase coexistence. A model is proposed, with a complete Hamiltonian (including superexchange and an indirect interaction), which reproduce the observed phenomenology.Comment: 6 pages. Figures include

    Distributional and classical solutions to the Cauchy Boltzmann problem for soft potentials with integrable angular cross section

    Full text link
    This paper focuses on the study of existence and uniqueness of distributional and classical solutions to the Cauchy Boltzmann problem for the soft potential case assuming Sn1S^{n-1} integrability of the angular part of the collision kernel (Grad cut-off assumption). For this purpose we revisit the Kaniel--Shinbrot iteration technique to present an elementary proof of existence and uniqueness results that includes large data near a local Maxwellian regime with possibly infinite initial mass. We study the propagation of regularity using a recent estimate for the positive collision operator given in [3], by E. Carneiro and the authors, that permits to study such propagation without additional conditions on the collision kernel. Finally, an LpL^{p}-stability result (with 1p1\leq p\leq\infty) is presented assuming the aforementioned condition.Comment: 19 page
    corecore