44,003 research outputs found

    Active vs. Passive Hard Disks Against a Membrane : Mechanical Pressure and Instability

    Full text link
    We experimentally study the mechanical pressure exerted by a set of respectively passive isotropic and self-propelled polar disks onto two different flexible unidimensional membranes. In the case of the isotropic disks, the mechanical pressure, inferred from the shape of the membrane, is identical for both membranes and follows the equilibrium equation of state for hard disks. On the contrary, for the self-propelled disks, the mechanical pressure strongly depends on the membrane in use, and is thus not a state variable. When self propelled disks are present on both sides of the membrane, we observe an instability of the membrane akin to the one predicted theoretically for Active Brownian Particles against a soft wall. In that case, the integrated mechanical pressure difference across the membrane can not be computed from the sole knowledge of the packing fractions on both sides; a further evidence of the absence of equation of state.Comment: 5 pages, 4 figures to appear in Phys. Rev. Let

    Energy consumption for ion transport in a segmented Paul trap

    Get PDF
    There is recent interest in determining energy costs of shortcuts to adiabaticity (STA), but different definitions of "cost" have been used. We demonstrate the importance of taking into account the Control System (CS) for a fair assessment of energy flows and consumptions. We model the energy consumption and power to transport an ion by a STA protocol in a multisegmented Paul trap. The ion is driven by an externally controlled, moving harmonic oscillator. Even if no net ion- energy is gained at destination, setting the time-dependent control parameters is a macroscopic operation that costs energy and results in energy dissipation for the short time scales implied by the intrinsically fast STA processes. The potential minimum is displaced by modulating the voltages on control (dc) electrodes. A secondary effect of the modulation, usually ignored as it does not affect the ion dynamics, is the time- dependent energy shift of the potential minimum. The non trivial part of the energy consumption is due to the electromotive forces to set the electrode voltages through the low-pass filters required to preserve the electronic noise from decohering the ion's motion. The results for the macroscopic CS (the Paul trap) are compared to the microscopic power and energy of the ion alone. Similarities are found -and may be used quantitatively to minimize costs- only when the CS-dependent energy shift of the harmonic oscillator is included in the ion energy

    Differential susceptibility to noise of mixed Turing and Hopf modes in a photosensitive chemical medium

    Get PDF
    We report on experiments with the photosensitive chlorine dioxide-iodine-malonic acid reaction (CDIMA) when forced with a random (spatiotemporally) distributed illumination. Acting on a mixed mode consisting of oscillating spots, close enough to the Hopf and Turing codimension-two bifurcation, we observe attenuation of oscillations while the spatial pattern is preserved. Numerical simulations confirm and extend these results. All together these observations point out to a larger vulnerability of the Hopf with respect to the Turing mode when facing noise of intermediate intensity and small correlation parameters.Peer ReviewedPostprint (published version

    Velocity dispersion estimates of APM galaxy clusters

    Get PDF
    We present 83 new galaxy radial velocities in the field of 18 APM clusters with redshifts between 0.06 and 0.13. The clusters have Abell identifications and the galaxies were selected within 0.75 h1^{-1}Mpc in projection from their centers. We derive new cluster velocity dispersions for 13 clusters using our data and published radial velocities. We analyze correlations between cluster velocity dispersions and cluster richness counts as defined in Abell and APM catalogs. The correlations show a statistically significant trend although with a large scatter suggesting that richness is a poor estimator of cluster mass irrespectively of cluster selection criteria and richness definition. We find systematically lower velocity dispersions in the sample of Abell clusters that do not fulfill APM cluster selection criteria suggesting artificially higher Abell richness counts due to contamination by projection effects in this subsample.Comment: Accepted for publication in MNRA

    Quantum Resonances and Regularity Islands in Quantum Maps

    Full text link
    We study analytically as well as numerically the dynamics of a quantum map near a quantum resonance of an order q. The map is embedded into a continuous unitary transformation generated by a time-independent quasi-Hamiltonian. Such a Hamiltonian generates at the very point of the resonance a local gauge transformation described the unitary unimodular group SU(q). The resonant energy growth of is attributed to the zero Liouville eigenmodes of the generator in the adjoint representation of the group while the non-zero modes yield saturating with time contribution. In a vicinity of a given resonance, the quasi-Hamiltonian is then found in the form of power expansion with respect to the detuning from the resonance. The problem is related in this way to the motion along a circle in a (q^2-1)-component inhomogeneous "magnetic" field of a quantum particle with qq intrinsic degrees of freedom described by the SU(q) group. This motion is in parallel with the classical phase oscillations near a non-linear resonance. The most important role is played by the resonances with the orders much smaller than the typical localization length, q << l. Such resonances master for exponentially long though finite times the motion in some domains around them. Explicit analytical solution is possible for a few lowest and strongest resonances.Comment: 28 pages (LaTeX), 11 ps figures, submitted to PR

    Survey for Emission-Line Galaxies: Universidad Complutense de Madrid List 3

    Get PDF
    A new low-dispersion objective-prism search for low-redshift (z<0.045) emission-line galaxies (ELG) has been carried out by the Universidad Complutense de Madrid with the Schmidt Telescope at the Calar-Alto Observatory. This is a continuation of the UCM Survey, which was performed by visual selection of candidates in photographic plates via the presence of the Halpha+[NII]6584 blend in emission. In this new list we have applied an automatic procedure, fully developed by us, for selecting and analyzing the ELG candidates on the digitized images obtained with the MAMA machine. The analyzed region of the sky covers 189 square degrees in nine fields near R.A.=14h & 17h, Dec=25 deg. The final sample contains 113 candidates. Special effort has been made to obtain a large amount of information directly from our uncalibrated plates by using several external calibrations. The parameters obtained for the ELG candidates allow for the study of the statistical properties for the sample.Comment: 13 pages, 18 PostScript figures, 6 JPEG figures, Table 2 corrected. Accepted for publication in Astrophysical Journal Supplements, also available at http://www.ucm.es/info/Astrof/opera/LIST3_ApJS99

    Simultaneous measurement of multiple parameters of a subwavelength structure based on the weak value formalism

    Get PDF
    A mathematical extension of the weak value formalism to the simultaneous measurement of multiple parameters is presented in the context of an optical focused vector beam scatterometry experiment. In this example, preselection and postselection are achieved via spatially-varying polarization control, which can be tailored to optimize the sensitivity to parameter variations. Initial experiments for the two-parameter case demonstrate that this method can be used to measure physical parameters with resolutions at least 1000 times smaller than the wavelength of illumination
    corecore