6,673 research outputs found

    NGC 3105: a young open cluster with low metallicity

    Get PDF
    NGC 3105 is a young open cluster hosting blue, yellow and red supergiants. This rare combination makes it an excellent laboratory to constrain evolutionary models of high-mass stars. It is poorly studied and fundamental parameters such as its age or distance are not well defined. We intend to characterize in an accurate way the cluster as well as its evolved stars, for which we derive for the first time atmospheric parameters and chemical abundances. We identify 126 B-type likely members within a radius of 2.7±\pm0.6 arcmin, which implies an initial mass, MclM_{cl}\approx4100 M_{\odot}. We find a distance of 7.2±\pm0.7 kpc for NGC 3105, placing it at RGCR_{GC}=10.0±\pm1.2 kpc. Isochrone fitting supports an age of 28±\pm6 Ma, implying masses around 9.5 M_{\odot} for the supergiants. A high fraction of Be stars (\approx25 %) is found at the top of the main sequence down to spectral type b3. From the spectral analysis we estimate for the cluster a vradv_{rad}=+46.9±\pm0.9 km s1^{-1} and a low metallicity, [Fe/H]=-0.29±\pm0.22. We also have determined, for the first time, chemical abundances for Li, O, Na, Mg, Si, Ca, Ti, Ni, Rb, Y, and Ba for the evolved stars. The chemical composition of the cluster is consistent with that of the Galactic thin disc. An overabundance of Ba is found, supporting the enhanced ss-process. NGC 3105 has a low metallicity for its Galactocentric distance, comparable to typical LMC stars. It is a valuable spiral tracer in a very distant region of the Carina-Sagittarius spiral arm, a poorly known part of the Galaxy. As one of the few Galactic clusters containing blue, yellow and red supergiants, it is massive enough to serve as a testbed for theoretical evolutionary models close to the boundary between intermediate and high-mass stars.Comment: 18 pages, 13 figures. Accepted for publication in A&

    Nonextensive thermodynamic functions in the Schr\"odinger-Gibbs ensemble

    Get PDF
    Schr\"odinger suggested that thermodynamical functions cannot be based on the gratuitous allegation that quantum-mechanical levels (typically the orthogonal eigenstates of the Hamiltonian operator) are the only allowed states for a quantum system [E. Schr\"odinger, Statistical Thermodynamics (Courier Dover, Mineola, 1967)]. Different authors have interpreted this statement by introducing density distributions on the space of quantum pure states with weights obtained as functions of the expectation value of the Hamiltonian of the system. In this work we focus on one of the best known of these distributions, and we prove that, when considered in composite quantum systems, it defines partition functions that do not factorize as products of partition functions of the noninteracting subsystems, even in the thermodynamical regime. This implies that it is not possible to define extensive thermodynamical magnitudes such as the free energy, the internal energy or the thermodynamic entropy by using these models. Therefore, we conclude that this distribution inspired by Schr\"odinger's idea can not be used to construct an appropriate quantum equilibrium thermodynamics.Comment: 32 pages, revtex 4.1 preprint style, 5 figures. Published version with several changes with respect to v2 in text and reference

    About the computation of finite temperature ensemble averages of hybrid quantum-classical systems with molecular dynamics

    Get PDF
    Molecular or condensed matter systems are often well approximated by hybrid quantum-classical models: the electrons retain their quantum character, whereas the ions are considered to be classical particles. We discuss various alternative approaches for the computation of equilibrium (canonical) ensemble averages for observables of these hybrid quantum-classical systems through the use of molecular dynamics (MD)-i.e. by performing dynamics in the presence of a thermostat and computing time-averages over the trajectories. Often, in classical or ab initio MD, the temperature of the electrons is ignored and they are assumed to remain at the instantaneous ground state given by each ionic configuration during the evolution. Here, however, we discuss the general case that considers both classical and quantum subsystems at finite temperature canonical equilibrium. Inspired by a recent formal derivation for the canonical ensemble for quantum classical hybrids, we discuss previous approaches found in the literature, and provide some new formulas

    Entropy and canonical ensemble of hybrid quantum classical systems

    Get PDF
    We generalize von Neumann entropy function to hybrid quantum-classical systems by considering the principle of exclusivity of hybrid events. For non-interacting quantum and classical subsystems, this entropy function separates into the sum of the usual classical (Gibbs) and quantum (von Neumann) entropies, whereas if the two parts do interact, it can be properly separated into the classical entropy for the marginal classical probability, and the conditional quantum entropy. We also deduce the hybrid canonical ensemble (HCE) as the one that maximizes this entropy function, for a fixed ensemble energy average. We prove that the HCE is additive for non-interacting systems for all thermodynamic magnitudes, and reproduces the appropriate classical- and quantum-limit ensembles. Furthermore, we discuss how and why Ehrenfest dynamics does not preserve the HCE and does not yield the correct ensemble averages when time-averages of simulations are considered -- even if it can still be used to obtain correct averages by modifying the averaging procedure.Comment: 6 pages + 4 pages Supp. Ma

    Statistics and Nos\'e formalism for Ehrenfest dynamics

    Get PDF
    Quantum dynamics (i.e., the Schr\"odinger equation) and classical dynamics (i.e., Hamilton equations) can both be formulated in equal geometric terms: a Poisson bracket defined on a manifold. In this paper we first show that the hybrid quantum-classical dynamics prescribed by the Ehrenfest equations can also be formulated within this general framework, what has been used in the literature to construct propagation schemes for Ehrenfest dynamics. Then, the existence of a well defined Poisson bracket allows to arrive to a Liouville equation for a statistical ensemble of Ehrenfest systems. The study of a generic toy model shows that the evolution produced by Ehrenfest dynamics is ergodic and therefore the only constants of motion are functions of the Hamiltonian. The emergence of the canonical ensemble characterized by the Boltzmann distribution follows after an appropriate application of the principle of equal a priori probabilities to this case. Once we know the canonical distribution of a Ehrenfest system, it is straightforward to extend the formalism of Nos\'e (invented to do constant temperature Molecular Dynamics by a non-stochastic method) to our Ehrenfest formalism. This work also provides the basis for extending stochastic methods to Ehrenfest dynamics.Comment: 28 pages, 1 figure. Published version. arXiv admin note: substantial text overlap with arXiv:1010.149

    Entropy and canonical ensemble of hybrid quantum classical systems

    Get PDF
    In this work we generalize and combine Gibbs and von Neumann approaches to build, for the first time, a rigorous definition of entropy for hybrid quantum-classical systems. The resulting function coincides with the two cases above when the suitable limits are considered. Then, we apply the MaxEnt principle for this hybrid entropy function and obtain the natural candidate for the hybrid canonical ensemble (HCE). We prove that the suitable classical and quantum limits of the HCE coincide with the usual classical and quantum canonical ensembles since the whole scheme admits both limits, thus showing that the MaxEnt principle is applicable and consistent for hybrid systems

    The interplay between double exchange, super-exchange, and Lifshitz localization in doped manganites

    Get PDF
    Considering the disorder caused in manganites by the substitution of Mn by Fe or Ga, we accomplish a systematic study of doped manganites begun in previous papers. To this end, a disordered model is formulated and solved using the Variational Mean Field technique. The subtle interplay between double exchange, super-exchange, and disorder causes similar effects on the dependence of T_C on the percentage of Mn substitution in the cases considered. Yet, in La2/3_{2/3}Ca1/3_{1/3}Mn1y_{1-y}Gay_yO3_3 our results suggest a quantum critical point (QCP) for y0.10.2y\approx 0.1-0.2, associated to the localization of the electronic states of the conduction band. In the case of Lax_xCax_xMn1y_{1-y}Fey_yO3_3 (with x=1/3,3/8x=1/3,3/8) no such QCP is expected.Comment: 6 pages + 3 postscript figures. Largely extended discussio

    NGC 6067: A young and massive open cluster with high metallicity

    Get PDF
    © 2017 The Authors. NGC6067 is a young open cluster hosting the largest population of evolved stars among known Milky Way clusters in the 50-150 Ma age range. It thus represents the best laboratory in our Galaxy to constrain the evolutionary tracks of 5-7M⊙ stars. We have used high-resolution spectra of a large sample of bright cluster members (45), combined with archival photometry, to obtain accurate parameters for the cluster as well as stellar atmospheric parameters.We derive a distance of 1.78 ± 0.12 kpc, an age of 90 ± 20 Ma and a tidal radius of 14.8 -3.2+6.8 arcmin. We estimate an initial mass above 5700M⊙, for a present-day evolved population of two Cepheids, two A supergiants and 12 red giants with masses ≈6M⊙. We also determine chemical abundances of Li, O, Na, Mg, Si, Ca, Ti, Ni, Rb, Y and Ba for the red clump stars. We find a supersolar metallicity, [Fe/H]=+0.19 ± 0.05, and a homogeneous chemical composition, consistent with the Galactic metallicity gradient. The presence of a Li-rich red giant, star 276 with A(Li)=2.41, is also detected. An overabundance of Ba is found, supporting the enhanced s-process. The ratio of yellow to red giants is much smaller than 1, in agreement with models with moderate overshooting, but the properties of the cluster Cepheids do not seem consistent with current Padova models for supersolar metallicity
    corecore