22 research outputs found

    Brucella suis urease encoded by ure1 but not ure2 is necessary for intestinal infection of BALB/c mice

    Get PDF
    BACKGROUND: In prokaryotes, the ureases are multi-subunit, nickel-containing enzymes that catalyze the hydrolysis of urea to carbon dioxide and ammonia. The Brucella genomes contain two urease operons designated as ure1 and ure2. We investigated the role of the two Brucella suis urease operons on the infection, intracellular persistence, growth, and resistance to low-pH killing. RESULTS: The deduced amino acid sequence of urease-α subunits of operons-1 and -2 exhibited substantial identity with the structural ureases of alpha- and beta-proteobacteria, Gram-positive and Gram-negative bacteria, fungi, and higher plants. Four ure deficient strains were generated by deleting one or more of the genes encoding urease subunits of B. suis strain 1330 by allelic exchange: strain 1330Δure1K (generated by deleting ureD and ureA in ure1 operon), strain 1330Δure2K (ureB and ureC in ure2 operon), strain 1330Δure2C (ureA, ureB, and ureC in ure2 operon), and strain 1330Δure1KΔure2C (ureD and ureA in ure1 operon and ureA, ureB, and ureC in ure2 operon). When grown in urease test broth, strains 1330, 1330Δure2K and 1330Δure2C displayed maximal urease enzyme activity within 24 hours, whereas, strains 1330Δure1K and 1330Δure1KΔure2C exhibited zero urease activity even 96 h after inoculation. Strains 1330Δure1K and 1330Δure1KΔure2C exhibited slower growth rates in tryptic soy broth relative to the wild type strain 1330. When the BALB/c mice were infected intraperitoneally with the strains, six weeks after inoculation, the splenic recovery of the ure deficient strains did not differ from the wild type. In contrast, when the mice were inoculated by gavage, one week after inoculation, strain 1330Δure1KΔure2C was cleared from livers and spleens while the wild type strain 1330 was still present. All B. suis strains were killed when they were incubated in-vitro at pH 2.0. When the strains were incubated at pH 2.0 supplemented with 10 mM urea, strain 1330Δure1K was completely killed, strain 1330Δure2C was partially killed, but strains 1330 and 1330Δure2K were not killed. CONCLUSION: These findings suggest that the ure1 operon is necessary for optimal growth in culture, urease activity, resistance against low-pH killing, and in vivo persistence of B. suis when inoculated by gavage. The ure2 operon apparently enhances the resistance to low-pH killing in-vitro

    Photonic Biosensor Assays to Detect and Distinguish Subspecies of Francisella tularensis

    Get PDF
    The application of photonic biosensor assays to diagnose the category-A select agent Francisella tularensis was investigated. Both interferometric and long period fiber grating sensing structures were successfully demonstrated; both these sensors are capable of detecting the optical changes induced by either immunological binding or DNA hybridization. Detection was made possible by the attachment of DNA probes or immunoglobulins (IgG) directly to the fiber surface via layer-by-layer electrostatic self-assembly. An optical fiber biosensor was tested using a standard transmission mode long period fiber grating of length 15 mm and period 260 μm, and coated with the IgG fraction of antiserum to F. tularensis. The IgG was deposited onto the optical fiber surface in a nanostructured film, and the resulting refractive index change was measured using spectroscopic ellipsometry. The presence of F. tularensis was detected from the decrease of peak wavelength caused by binding of specific antigen. Detection and differentiation of F. tularensis subspecies tularensis (type A strain TI0902) and subspecies holarctica (type B strain LVS) was further accomplished using a single-mode multi-cavity fiber Fabry-Perot interferometric sensor. These sensors were prepared by depositing seven polymer bilayers onto the fiber tip followed by attaching one of two DNA probes: (a) a 101-bp probe from the yhhW gene unique to type-A strains, or (b) a 117-bp probe of the lpnA gene, common to both type-A and type-B strains. The yhhW probe was reactive with the type-A, but not the type-B strain. Probe lpnA was reactive with both type-A and type-B strains. Nanogram quantities of the target DNA could be detected, highlighting the sensitivity of this method for DNA detection without the use of PCR. The DNA probe reacted with 100% homologous target DNA, but did not react with sequences containing 2-bp mismatches, indicating the high specificity of the assay. These assays will fill an important void that exists for rapid, culture-free, and field-compatible diagnosis of F. tularensis

    Mitochondria-localized AMPK responds to local energetics and contributes to exercise and energetic stress-induced mitophagy

    Get PDF
    Mitochondria form a complex, interconnected reticulum that is maintained through coordination among biogenesis, dynamic fission, and fusion and mitophagy, which are initiated in response to various cues to maintain energetic homeostasis. These cellular events, which make up mitochondrial quality control, act with remarkable spatial precision, but what governs such spatial specificity is poorly understood. Herein, we demonstrate that specific isoforms of the cellular bioenergetic sensor, 5′ AMP-activated protein kinase (AMPKα1/α2/β2/γ1), are localized on the outer mitochondrial membrane, referred to as mitoAMPK, in various tissues in mice and humans. Activation of mitoAMPK varies across the reticulum in response to energetic stress, and inhibition of mitoAMPK activity attenuates exercise-induced mitophagy in skeletal muscle in vivo. Discovery of a mitochondrial pool of AMPK and its local importance for mitochondrial quality control underscores the complexity of sensing cellular energetics in vivo that has implications for targeting mitochondrial energetics for disease treatment

    Isolation and Mutagenesis of a Capsule-Like Complex (CLC) from Francisella tularensis, and Contribution of the CLC to F. tularensis Virulence in Mice

    Get PDF
    BACKGROUND: Francisella tularensis is a category-A select agent and is responsible for tularemia in humans and animals. The surface components of F. tularensis that contribute to virulence are not well characterized. An electron-dense capsule has been postulated to be present around F. tularensis based primarily on electron microscopy, but this specific antigen has not been isolated or characterized. METHODS AND FINDINGS: A capsule-like complex (CLC) was effectively extracted from the cell surface of an F. tularensis live vaccine strain (LVS) lacking O-antigen with 0.5% phenol after 10 passages in defined medium broth and growth on defined medium agar for 5 days at 32°C in 7% CO₂. The large molecular size CLC was extracted by enzyme digestion, ethanol precipitation, and ultracentrifugation, and consisted of glucose, galactose, mannose, and Proteinase K-resistant protein. Quantitative reverse transcriptase PCR showed that expression of genes in a putative polysaccharide locus in the LVS genome (FTL_1432 through FTL_1421) was upregulated when CLC expression was enhanced. Open reading frames FTL_1423 and FLT_1422, which have homology to genes encoding for glycosyl transferases, were deleted by allelic exchange, and the resulting mutant after passage in broth (LVSΔ1423/1422_P10) lacked most or all of the CLC, as determined by electron microscopy, and CLC isolation and analysis. Complementation of LVSΔ1423/1422 and subsequent passage in broth restored CLC expression. LVSΔ1423/1422_P10 was attenuated in BALB/c mice inoculated intranasally (IN) and intraperitoneally with greater than 80 times and 270 times the LVS LD₅₀, respectively. Following immunization, mice challenged IN with over 700 times the LD₅₀ of LVS remained healthy and asymptomatic. CONCLUSIONS: Our results indicated that the CLC may be a glycoprotein, FTL_1422 and -FTL_1423 were involved in CLC biosynthesis, the CLC contributed to the virulence of F. tularensis LVS, and a CLC-deficient mutant of LVS can protect mice against challenge with the parent strain

    Complex II subunit SDHD is critical for cell growth and metabolism, which can be partially restored with a synthetic ubiquinone analog

    No full text
    Abstract Background Succinate dehydrogenase (Complex II) plays a dual role in respiration by catalyzing the oxidation of succinate to fumarate in the mitochondrial Krebs cycle and transferring electrons from succinate to ubiquinone in the mitochondrial electron transport chain (ETC). Mutations in Complex II are associated with a number of pathologies. SDHD, one of the four subunits of Complex II, serves by anchoring the complex to the inner-membrane and transferring electrons from the complex to ubiquinone. Thus, modeling SDHD dysfunction could be a valuable tool for understanding its importance in metabolism and developing novel therapeutics, however no suitable models exist. Results Via CRISPR/Cas9, we mutated SDHD in HEK293 cells and investigated the in vitro role of SDHD in metabolism. Compared to the parent HEK293, the knockout mutant HEK293ΔSDHD produced significantly less number of cells in culture. The mutant cells predictably had suppressed Complex II-mediated mitochondrial respiration, but also Complex I-mediated respiration. SDHD mutation also adversely affected glycolytic capacity and ATP synthesis. Mutant cells were more apoptotic and susceptible to necrosis. Treatment with the mitochondrial therapeutic idebenone partially improved oxygen consumption and growth of mutant cells. Conclusions Overall, our results suggest that SDHD is vital for growth and metabolism of mammalian cells, and that respiratory and growth defects can be partially restored with treatment of a ubiquinone analog. This is the first report to use CRISPR/Cas9 approach to construct a knockout SDHD cell line and evaluate the efficacy of an established mitochondrial therapeutic candidate to improve bioenergetic capacity

    Carboxyl-Terminal Protease Regulates Brucella suis Morphology in Culture and Persistence in Macrophages and Mice

    No full text
    The putative carboxyl-terminal processing protease (CtpA) of Brucella suis 1330 is a member of a novel family of endoproteases involved in the maturation of proteins destined for the cell envelope. The B. suis CtpA protein shared up to 77% homology with CtpA proteins of other bacteria. A CtpA-deficient Brucella strain (1330ΔctpA), generated by allelic exchange, produced smaller colonies on enriched agar plates and exhibited a 50% decrease in growth rate in enriched liquid medium and no growth in salt-free enriched medium compared to the wild-type strain 1330 or the ctpA-complemented strain 1330ΔctpA[pBBctpA]. Electron microscopy revealed that in contrast to the native coccobacillus shape of wild-type strain 1330, strain 1330ΔctpA possessed a spherical shape, an increased cell diameter, and cell membranes partially dissociated from the cell envelope. In the J774 mouse macrophage cell line, 24 h after infection, the CFU of the strain 1330ΔctpA declined by approximately 3 log(10) CFU relative to wild-type strain 1330. Nine weeks after intraperitoneal inoculation of BALB/c mice, strain 1330ΔctpA had cleared from spleens but strain 1330 was still present. These observations suggest that the CtpA activity is necessary for the intracellular survival of B. suis. Relative to the saline-injected mice, strain 1330ΔctpA-vaccinated mice exhibited 4 to 5 log(10) CFU of protection against challenge with virulent B. abortus strain 2308 or B. suis strain 1330 but no protection against B. melitensis strain 16 M. This is the first report correlating a CtpA deficiency with cell morphology and attenuation of B. suis

    The Application of a Nanomaterial Optical Fiber Biosensor Assay for Identification of <i>Brucella</i> Nomenspecies

    No full text
    Bacteria in the genus Brucella are the cause of brucellosis in humans and many domestic and wild animals. A rapid and culture-free detection assay to detect Brucella in clinical samples would be highly valuable. Nanomaterial optical fiber biosensors (NOFS) are capable of recognizing DNA hybridization events or other analyte interactions with high specificity and sensitivity. Therefore, a NOFS assay was developed to detect Brucella DNA from cultures and in tissue samples from infected mice. An ionic self-assembled multilayer (ISAM) film was coupled to a long-period grating optical fiber, and a nucleotide probe complementary to the Brucella IS711 region and modified with biotin was bound to the ISAM by covalent conjugation. When the ISAM/probe duplex was exposed to lysate containing &#8805;100 killed cells of Brucella, or liver or spleen tissue extracts from Brucella-infected mice, substantial attenuation of light transmission occurred, whereas exposure of the complexed fiber to non-Brucella gram-negative bacteria or control tissue samples resulted in negligible attenuation of light transmission. Oligonucleotide probes specific for B. abortus, B. melitensis, and B. suis could also be used to detect and differentiate these three nomenspecies. In summary, the NOFS biosensor assay detected three nomenspecies of Brucella without the use of polymerase chain reaction within 30 min and could specifically detect low numbers of this bacterium in clinical samples

    Functional Analysis of a Predicted Flavonol Synthase Gene Family in Arabidopsis1[W][OA]

    Get PDF
    The genome of Arabidopsis (Arabidopsis thaliana) contains five sequences with high similarity to FLAVONOL SYNTHASE1 (AtFLS1), a previously characterized flavonol synthase gene that plays a central role in flavonoid metabolism. This apparent redundancy suggests the possibility that Arabidopsis uses multiple isoforms of FLS with different substrate specificities to mediate the production of the flavonols, quercetin and kaempferol, in a tissue-specific and inducible manner. However, biochemical and genetic analysis of the six AtFLS sequences indicates that, although several of the members are expressed, only AtFLS1 encodes a catalytically competent protein. AtFLS1 also appears to be the only member of this group that influences flavonoid levels and the root gravitropic response in seedlings under nonstressed conditions. This study showed that the other expressed AtFLS sequences have tissue- and cell type-specific promoter activities that overlap with those of AtFLS1 and encode proteins that interact with other flavonoid enzymes in yeast two-hybrid assays. Thus, it is possible that these “pseudogenes” have alternative, noncatalytic functions that have not yet been uncovered

    Evaluation of 1,3,4-Thiadiazole Carbonic Anhydrase Inhibitors for Gut Decolonization of Vancomycin-Resistant Enterococci

    No full text
    Vancomycin-resistant enterococci (VRE), Enterococcus faecium and Enterococcus faecalis, are high-priority drug-resistant pathogens in need of new therapeutic approaches. VRE originate in the gastrointestinal tract of carriers and can lead to more problematic downstream infections in the healthcare setting. Having a carrier of VRE admitted into a healthcare setting increases the risk to other patients for acquiring an infection. One strategy to eliminate the downstream infections is decolonization of VRE from carriers. Here, we report the activity of a set of carbonic anhydrase inhibitors in the in vivo VRE gastrointestinal decolonization mouse model. The molecules encompass a range of antimicrobial potency and intestinal permeability, and these factors were shown to influence the in vivo efficacy for VRE gut decolonization. Overall, carbonic anhydrase inhibitors exhibited superior VRE decolonization efficacy compared to the current drug of choice, linezolid
    corecore