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Functional Analysis of a Predicted Flavonol Synthase
Gene Family in Arabidopsis1[W][OA]

Daniel K. Owens2,3, Anne B. Alerding2,4, Kevin C. Crosby2, Aloka B. Bandara5,
James H. Westwood, and Brenda S.J. Winkel*

Departments of Biological Sciences (D.K.O., A.B.A., K.C.C., A.B.B., B.S.J.W.) and Plant Pathology,
Physiology, and Weed Science (J.H.W.), Virginia Tech, Blacksburg, Virginia 24061–0390

The genome of Arabidopsis (Arabidopsis thaliana) contains five sequences with high similarity to FLAVONOL SYNTHASE1
(AtFLS1), a previously characterized flavonol synthase gene that plays a central role in flavonoid metabolism. This apparent
redundancy suggests the possibility that Arabidopsis uses multiple isoforms of FLS with different substrate specificities to
mediate the production of the flavonols, quercetin and kaempferol, in a tissue-specific and inducible manner. However,
biochemical and genetic analysis of the six AtFLS sequences indicates that, although several of the members are expressed,
only AtFLS1 encodes a catalytically competent protein. AtFLS1 also appears to be the only member of this group that influences
flavonoid levels and the root gravitropic response in seedlings under nonstressed conditions. This study showed that the other
expressed AtFLS sequences have tissue- and cell type-specific promoter activities that overlap with those of AtFLS1 and encode
proteins that interact with other flavonoid enzymes in yeast two-hybrid assays. Thus, it is possible that these ‘‘pseudogenes’’
have alternative, noncatalytic functions that have not yet been uncovered.

Flavonoids are well-known plant natural products
that have a wide array of physiological functions
in plants, while also contributing significant health-
promoting properties to plant foods. Many of the roles
in plants, including UV protection, regulation of auxin
transport, modulation of flower color, and signaling,
have been attributed to a subclass of flavonoids known
as flavonols, which are among the most abundant
flavonoids (Bohm et al., 1998; Harborne and Williams,
2000). These same compounds have also been identified
with the antioxidant, antiproliferative, antiangiogenic,
and neuropharmacological properties of flavonoids
(Lee et al., 2005; Kim et al., 2006; Kim and Lee, 2007).
Although concerns have been raised about the potential
deleterious effects of high levels of dietary or supple-
mental flavonols, these appear to be largely unfounded

(Havsteen, 2002; Okamoto, 2005). As a result, under-
standing the synthesis of flavonols is of particular
interest from the perspective of metabolic engineering,
as illustrated by recent efforts to up-regulate flavonol
biosynthesis in tomato (Lycopersicon esculentum) fruit
(Schijlen et al., 2006) and rice (Oryza sativa; Reddy et al.,
2007) and to overproduce flavonols in Escherichia coli
(Leonard et al., 2006; Katsuyama et al., 2007).

Most plants synthesize derivatives of one or more of
the three major flavonols, quercetin, kaempferol, and
myricetin, which differ by only a single hydroxyl
group on the flavonoid B ring and yet can specify
quite different biological activities. The ratio of these
flavonols varies substantially among different tissues
and can be altered in response to environmental cues
(Winkel-Shirley, 2002). For example, UV-B light has
been shown to specifically induce the accumulation of
quercetin derivatives in Petunia, which have a higher
antioxidant potential and therefore are deemed more
effective sunscreens than other flavonols (Ryan et al.,
2002). Quercetin has also been shown to be most
effective at inhibiting the auxin efflux carrier (Jacobs
and Rubery, 1988), and quercetin and kaempferol
exhibit different spatial and temporal distribution
patterns in Arabidopsis (Arabidopsis thaliana) roots
that are consistent with roles in controlling auxin
movement (Peer et al., 2001, 2004). Interestingly, quer-
cetin is also frequently identified as a primary bioactive
compound in medicinal and food plants (Havsteen,
2002; Kim et al., 2006; Nichenametla et al., 2006).

The synthesis of flavonol aglycones has long been
attributed to a single enzyme, flavonol synthase (FLS),
which competes with several other enzymes for dihy-
droflavonol substrates. Among these are flavonoid
3#-hydroxylase (F3#H) and flavonoid 3#,5#-hydroxylase,
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which mediate the addition of hydroxyl groups to the
B ring of flavanones, flavones, dihydroflavonols, and
flavonols (Hagmann et al., 1983; Kaltenbach et al.,
1999), and dihydroflavonol reductase (DFR), which
drives flux away from flavonols into anthocyanin and
proanthocyanidin biosynthesis (Davies et al., 2003).
More recently, anthocyanidin synthase (ANS) has been
shown to use both dihydroflavonols and leucoantho-
cyanidins in vitro for the synthesis of flavonols, the
latter suggesting an alternative route to quercetin
using a substrate normally associated with antho-
cyanin and proanthocyanidin biosynthesis (Turnbull
et al., 2004; Wellmann et al., 2006; Lillo et al., 2008).
Some of the competition for common substrates ap-
pears to be mediated by the differential expression of
genes required for upstream (flavonol) versus down-
stream (anthocyanin and proanthocyanidin) pathways
(Pelletier et al., 1997; Mehrtens et al., 2005). Yet, how
these enzymes cooperate to control the metabolic
balance among the branch pathways of flavonoid
biosynthesis, possibly through participation in one or
more enzyme complexes, remains to be fully deter-
mined. In fact, efforts to use enzymes such as FLS and
ANS to engineer altered flavonoid profiles have had
consistently unpredictable outcomes (Schijlen et al.,
2006; Wellmann et al., 2006; Reddy et al., 2007).

Flavonoid biosynthesis in Arabidopsis is relatively
simple compared with that in many other higher
plants, involving the production of only three major
classes of compounds: flavonols, anthocyanins, and
proanthocyanidins. With only one apparent excep-
tion, the enzymes of the central flavonoid pathway,
including chalcone synthase (CHS), chalcone isomer-
ase (CHI), DFR, flavanone 3-hydroxylase (F3H), F3#H,
ANS, and anthocyanidin reductase, are encoded by
single genes. The exception is FLS, for which we have
identified six homologs in the Arabidopsis genome.
This raises the possibility that gene duplication has led
to a group of differentially regulated genes encoding
isoforms with varying substrate specificities, facilitat-
ing the synthesis of different flavonols to meet the
dynamic physiological needs of the plant. Here, we
describe an effort to test this hypothesis by examining
the expression patterns and biochemical characteris-
tics of the six Arabidopsis FLS isoforms as well as the
impact of knockout mutations on phenotypes asso-
ciated with flavonoid metabolism. The results of these
experiments provide new insights into the mecha-
nisms controlling flavonol accumulation in vivo.

RESULTS

Identification of a FLS Gene Family in Arabidopsis

The first Arabidopsis gene with high homology
to FLS genes from other plant species, AtFLS1
(At5g08640), was originally identified in the EST da-
tabase a number of years ago (Pelletier et al., 1997).
Analysis of flavonols in an En-induced mutant line

and activity assays with recombinant protein con-
firmed that the gene encoded a protein with FLS
activity (Wisman et al., 1998; Prescott et al., 2002).
Five additional sequences with high homology to FLS
genes were subsequently uncovered during sequenc-
ing of the Arabidopsis genome, which we have des-
ignated AtFLS2 (At5g63580), AtFLS3 (At5g63590),
AtFLS4 (At5g63595), AtFLS5 (At5g63600), and AtFLS6
(At5g43935; Arabidopsis Genome Initiative, 2000).
These sequences cluster more closely with FLS genes
from other plants than with other plant flavonoid
2-oxoglutarate-dependent dioxygenases (2-ODDs),
both at the nucleotide (data not shown) and predicted
amino acid (Fig. 1) levels. The six genes are all located
on chromosome 5, with AtFLS2, -3, -4, and -5 arranged
in a 7.5-kb tandem array (Fig. 2). The four clustered
genes are no more closely related to each other than to
the other two genes, with AtFLS2 the most distantly
related at the nucleotide level (48%–51% identity) and
the others exhibiting 62% to 73% identity. This sug-
gests that the duplications leading to the amplification
of this gene family, including the AtFLS2 to -5 tandem
array, are ancient events.

AtFLS1, -3, and -5 appear to encode full-length
proteins and all contain two introns at identical posi-
tions, corresponding to two of the five intron sites that
are conserved among plant 2-ODD genes (Prescott and
John, 1996). The AtFLS2 gene contains a large second
intron, and the predicted coding sequence encodes a
truncated protein lacking key C-terminal residues
required for Fe21 coordination (H220, D222, and
H276 in AtFLS1) and a-ketoglutarate binding (R286
and S288 in AtFLS1; Lukacin and Britsch, 1997;
Wilmouth et al., 2002). The situation is more complex
for AtFLS4 and AtFLS6, both of which are predicted to
contain an additional intron relative to the other four
AtFLS genes in what is otherwise the second exon (The
Arabidopsis Information Resource [TAIR] 7.0 genome
sequence, released April 23, 2007; Swarbreck et al.,
2008). To date, no full-length cDNA sequences have
been reported for AtFLS4. Of the four AtFLS4 EST
sequences available in GenBank (Alexandrov et al.,
2006) and the RIKEN Genomic Sciences Center (Seki
et al., 2004), only one spans the region containing the
predicted additional intron, and these sequences are
not spliced out, severely truncating the coding region.
As described in further detail below, reverse transcrip-
tion (RT)-PCR analysis of ecotype Landsberg erecta
(Ler) roots identified multiple transcripts for AtFLS4
that apparently arise from a complex differential
splicing scheme. Sequence analysis of four of these
cDNAs showed erroneous splicing at the 3# ends of
exons 1 and 2, resulting in premature stop codons (Fig.
2); all also retained the additional predicted intron
sequences. In the case of AtFLS6, no cDNA or EST
sequences have been reported to date, and efforts to
amplify transcripts from root RNA by RT-PCR were
unsuccessful (data not shown). If this gene is ex-
pressed at all, the transcript is likely to be processed
in a manner similar to that used for AtFLS4. Thus, it
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appears that AtFLS2, -4, and -6 are pseudogenes that
are unlikely to contribute to flavonol synthase activity
in Arabidopsis.

AtFLS Gene Expression Patterns

To test the possibility that the AtFLS genes have
acquired differential patterns of expression, transcript
abundance and promoter activities were examined
over the course of Arabidopsis plant growth and
development. Plants growing in soil under a 16-h
photoperiod were sampled at regular intervals over a
7-week period. Semiquantitative RT-PCR was used to
compare the abundance of the transcripts in whole
seedlings and in plant organs known to accumulate
high levels of flavonols (Shirley et al., 1995). AtFLS1
displayed the broadest pattern of expression (Fig. 3A).
The highest AtFLS1 transcript levels were detected
during the reproductive stage, in the developing inflo-
rescence, floral buds, flowers, and siliques. Lower, but
still substantial, levels were detected in the roots and
shoots of young seedlings and in leaves of later vege-
tative stages. This pattern is consistent with the publicly
available microarray data for different stages of Arabi-
dopsis development (Genevestigator [Fig. 3, B and C]
and AtGenExpress [data not shown]). Interestingly, the
AtFLS2 pseudogene appears to be expressed at high
levels in the shoot apex and lower stem, tissues in
which AtFLS1 transcripts were not detected, and at low
levels in flowers and siliques (Fig. 3A). These patterns
are also reflected in the microarray data (Fig. 3, B and
C). AtFLS5 appeared to be expressed at much lower
levels, with transcripts detected primarily in seedling
roots, while AtFLS3 expression was undetectable or
extremely low in all samples examined; these findings
are again consistent with the microarray data (Fig. 3, B

and C). Expression of the AtFLS4 and -6 pseudogenes
was not examined, as these genes appear to have little,
if any, expression based on the EST databases; they are
also not represented on either the 8 K or 22 K array used
to generate the data compiled in Genevestigator.

It is interesting that the microarray data indicate that
expression of AtFLS1, but not AtFLS2, -3, or -5, paral-
lels that of the other ‘‘early’’ flavonoid genes during
development and in the response to light and several
other external cues (Fig. 3, B–D). This is also reflected
in the ATTED-II database, where AtFLS1 expression
has a 0.83 to 0.84 correlation score with other ‘‘early’’
flavonoid genes, while AtFLS3 and AtFLS5 are corre-
lated with each other (score of 0.70) but not with any
other flavonoid genes (Obayashi et al., 2007).

Developmental gene expression patterns were fur-
ther investigated by analyzing transgenic plants con-
taining AtFLS1, -2, -3, and -5 promoter sequences
fused to the GUS gene. AtFLS1, -3, and -5 were
expressed in the root-shoot transition zone of 3-d-old
seedlings and along the length of the roots at 9 d (Fig.
4, A–C and G–I). In 9-d-old seedlings, AtFLS3 pro-
moter activity was strongest in the vascular bundle,
while the AtFLS5 promoter was active from the vas-
cular bundle up to, but not including, the epidermis,
although it was not possible to resolve staining differ-
ences between the endodermis and cortex. Compared
with AtFLS3 and -5 in 9-d-old roots, AtFLS1 expression
appeared more sporadically, with no consistent ex-
pression pattern emerging in roots at this stage of
development. AtFLS1 and -3 root expression de-
creased in later vegetative stages, but AtFLS5 was
sporadically detected in various positions of older
roots (data not shown). All three isoforms showed
expression in initiating lateral roots, especially in
young plants (Fig. 4, J–L).

Figure 1. Phylogeny of the AtFLS isoforms and other
dioxygenases of the flavonoid pathway based on
predicted amino acid sequences. IPNS, Isopenicillin
N synthase.
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In vegetative shoots, AtFLS1 promoter activity was
consistently detected in young leaves, appearing in the
upper epidermal tissues and especially concentrated
in the youngest initiating leaves (near the shoot apical
meristem), including the trichomes (Fig. 4M). The
AtFLS3 and -5 promoters were also active in young
leaves, but they were limited to trichomes for AtFLS3
and to the meristem for AtFLS5 (Fig. 4, N and O).
While AtFLS1 expression was visible in leaf tissues for
all transgenic lines that we investigated, this was not
the case for AtFLS3 and -5, in which expression was
limited to a few lines each, consistent with the overall
lower gene expression levels for these isoforms as
assessed by RT-PCR. High levels of AtFLS1 promoter
activity were also detected in reproductive tissues,
specifically in petals, stamens (filament and anther),
carpels (stigma), and siliques (pedicel/valve junction),
and sporadically through the perianth of young bud
clusters and mature flowers (Fig. 4, P–R), consistent
with the results of RT-PCR analysis. No AtFLS3 or
AtFLS5 promoter activity was detected in any of these
tissues. However, this is the one stage at which the
AtFLS2 promoter was observed, with the highest GUS
activity occurring in the shoot apex at the base of the
inflorescence bolt and in the pedicel/valve junction
(Fig. 4, S–U), consistent with the RT-PCR experiments
and the Genevestigator microarray database.

A hallmark of flavonoid genes such as CHS, CHI, and
DFR is that their expression is strongly induced by a
variety of environmental factors, including both biotic
and abiotic factors that cause mechanical damage to the
plant (McKhann and Hirsch, 1994; Djordjevic et al.,
1997; Reymond et al., 2000; Richard et al., 2000; Peters
and Constabel, 2002; Pang et al., 2005). One example is
the induction of CHS gene expression in diverse plant
species by Orobanche aegyptiaca, a plant parasite that
forms a physical connection with host roots and acti-
vates a variety of wound- and jasmonic acid-inducible
genes (Griffitts et al., 2004; J.H. Westwood, unpublished
data). To test whether the AtFLS genes were also
induced by infection with this parasite, the promoter-
GUS plants were grown for 3 weeks in a semihydro-
ponic system and then infected with O. aegyptiaca as
described by Westwood (2000). Unlike the AtCHS
promoter, which was strongly induced upon invasion
of the O. aegyptiaca haustorium, the AtFLS1 to -5
promoters did not exhibit any detectable activity in
this assay (Fig. 4, V–AA). The AtFLS1 to -5 promoters
were also not induced when roots were accidentally
damaged during handling, unlike the CHS promoter,
which showed strong activation at sites of breakage
(data not shown). A similar lack of wound inducibility
of FLS genes relative to other flavonoid genes was
recently reported in Populus and was suggested to
reflect the lack of participation of FLS in the synthesis of
condensed tannin defense molecules (Tsai et al., 2006).
Therefore, although AtFLS1 is coordinately expressed
with other flavonoid genes during development
(Pelletier et al., 1997; Fig. 3), it is also subject to distinct
regulation in response to environmental factors.

In Vitro Enzyme Activity of AtFLS1, -3, and -5

In Arabidopsis, as in other plant species, the relative
levels of quercetin and kaempferol vary substantially
depending on the tissue and cell type (Peer et al., 2001;
Tohge et al., 2005; Kerhoas et al., 2006; Stracke et al.,
2007). To test the possibility that differential expression
of AtFLS isoforms with distinct substrate specificities
could determine the relative ratios of these two flavo-
nols, AtFLS1, -3, and -5 enzymes were produced in
E. coli as thioredoxin fusion proteins and assayed
using a variety of substrates. Consistent with previous
reports, AtFLS1 was very effective at converting dihy-
drokaempferol (DHK) to kaempferol (Fig. 5A; Wisman
et al., 1998; Lukacin et al., 2003), while only a portion of
the supplied dihydroquercetin (DHQ) was converted
to quercetin by this enzyme under the same conditions
(Fig. 5B; Turnbull et al., 2004). In addition, a portion of
naringenin, normally the substrate for F3H, was con-
verted to DHK by AtFLS1, some of which was subse-
quently converted to kaempferol (Fig. 5C; Prescott
et al., 2002). Thus, AtFLS1 exhibited a clear preference
for DHK in these assays, while, surprisingly, DHQ was
used less well than even naringenin. However, neither
AtFLS3 nor AtFLS5 appeared to have enzyme activity
with any of the substrates under a variety of condi-

Figure 2. Arrangement of the AtFLS genes in the Arabidopsis genome.
All six genes are located on chromosome 5. AtFLS2 to -5 are clustered
in a 7.5-kb region. AtFLS1, -3, and -5 appear to constitute full-length or
nearly full-length coding sequences, while the AtFLS2, -4, and -6
coding regions are truncated, with the AtFLS4 gene giving rise to
multiple forms, apparently due to alternative/aberrant splicing. Exons
are shown in gray, and introns are shown in white.

Arabidopsis Flavonol Synthase Gene Family

Plant Physiol. Vol. 147, 2008 1049

D
ow

nloaded from
 https://academ

ic.oup.com
/plphys/article/147/3/1046/6107416 by guest on 19 M

arch 2022



tions that included variations in pH, temperature,
enzyme and substrate concentration, and enzyme
enrichment and cleavage procedures (Fig. 5, A–C;
data not shown).

Close inspection of the primary sequences of the
AtFLS proteins identified a region spanning approxi-
mately 30 amino acids that is present in AtFLS1 and all
other plant flavonoid dioxygenases but that is altered

or absent in AtFLS2 to -6 (Fig. 6A). Included in this
region are Arg and Glu residues (Arg-25 and Glu-29 in
AtFLS1) that are invariant in all other plant dioxygen-
ases as well as numerous other residues that are strictly
conserved among the flavonoid 2-ODD enzymes, FLS,
F3H, ANS, and FNS1. To analyze this region on a
structural level, homology models were constructed
based on the crystal structure of Arabidopsis ANS

Figure 3. Analysis of AtFLS gene expression. A, Semi-
quantitative RT-PCR analysis of plants and plant tissues
at various developmental stages. Positive controls (1)
contained cDNA clones for each gene, and negative
controls (2) contained no template. RNA samples
from whole seedlings and shoots of 16-d-old plants
were analyzed and used to infer gene expression in
roots. B to D, Data from the public microarray data-
bases for the AtFLS genes and other select flavonoid
genes obtained using Genevestigator (Zimmermann
et al., 2004).
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(Protein Data Bank identifier 1GP4, Wilmouth et al.,
2002), with which AtFLS1, -3, and -5 exhibit 37.8%,
33.9%, and 31.4% amino acid identity, respectively (Fig.

6B). The root mean square deviation (RMSD) values
for the homology models of AtFLS3 and AtFLS5 com-
pared with AtFLS1 were 1.23 and 1.48 Å, respectively,

Figure 4. Developmental, organ-specific, and
parasite-induced expression of the AtFLS
genes. Promoter-GUS fusions were analyzed
in multiple independent transgenic lines by
histochemical staining with 5-bromo-4-chloro-
3-indolyl-b-D-glucuronide. Staining was ob-
served primarily in 3-d-old seedlings (A–C),
9-d-old seedlings (D–I), initiating lateral roots
in plants of various ages (J–L), trichomes on 30-
d-old plants (M–O), and reproductive structures
of 51-d-old plants (P–U). Arrows identify the
root-shoot transition zone in A to C and G to I
and lateral roots in J to L. Unlike the AtCHS
promoter (V), expression of the AtFLS1 to -5
promoters was not induced by infection with
the plant parasite O. aegyptiaca (W–AA).

Arabidopsis Flavonol Synthase Gene Family

Plant Physiol. Vol. 147, 2008 1051

D
ow

nloaded from
 https://academ

ic.oup.com
/plphys/article/147/3/1046/6107416 by guest on 19 M

arch 2022



Figure 5. (Legend appears on following page.)
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indicating that the structures are quite similar overall,
including the architecture of the jellyroll core. How-
ever, there appeared to be substantial differences in the
positions of several key active site residues among
these proteins. In particular, the Fe21-coordinating
residue Asp-222 differed by 3.28 Å between AtFLS1
and -3, while the adjacent His-220 varied by 2.55 Å
between AtFLS1 and -5. The largest apparent differ-
ences are near the N terminus and in the largely
unstructured C terminus. The conserved 30 amino
acids that are altered or absent in the AtFLS2 to -6
proteins constitute a region in the AtFLS1 model that
contains a seven-residue a-helix (residues 26–31) near
the mouth of the jellyroll motif and is otherwise largely
unstructured. The absolutely conserved Arg-25 is ad-
jacent to this helix, while the conserved Glu-29 is in the
center of the helix. This structural element appears
to be missing in AtFLS3 and AtFLS5. An additional
N-terminal a-helix in the homology model (AtFLS1
residues 5–8) is also absent in AtFLS3 and is present,
but appears to be positioned differently, in AtFLS5.

Further evidence for the functional importance of
this N-terminal region comes from analysis of expres-
sion constructs derived from AtFLS1 clone EST
153O10T7, which lacks the coding sequences for the
21 N-terminal amino acids (Pelletier et al., 1999). The
truncation completely eliminates the first a-helix and
the first seven residues in an unstructured region of
the conserved 30-amino acid fragment. Protein pro-
duced from this construct had no activity with any of
the tested substrates when assayed under the same
conditions as the full-length AtFLS1 (data not shown).

To test the possibility that the N-terminal region of
AtFLS1 could restore the activity of the inactive AtFLS
isoforms, a chimeric construct was generated in which
the N-terminal 30 amino acids of AtFLS5 were re-
placed with the first 40 amino acids of AtFLS1 (Fig.
5D). However, the chimeric protein also had no de-
tectable activity with any of the tested substrates. This
indicates that the 21 N-terminal amino acids of AtFLS1
are required for activity in that enzyme but are not
sufficient to restore activity to AtFLS5. This suggests
that the structural integrity of the remaining AtFLS5
gene product underwent further decay following loss
of the critical N-terminal residues.

Two-Hybrid Analysis of Interactions with Other
Flavonoid Enzymes

The possibility that the FLS proteins may serve
nonenzymatic roles as part of a flavonoid biosynthetic

metabolon was investigated by yeast two-hybrid anal-
ysis of potential interactions of AtFLS1, -3, and -5 with
AtCHS, AtCHI, AtF3H, and AtDFR. The proteins were
analyzed in all possible pairwise combinations, fused
to either the activation domain or the binding domain
of GAL4 (Chevray and Nathans, 1992; Kohalmi et al.,
1998). The observed interactions are summarized in
Table I. AtFLS1, -3, and -5 interacted with AtCHS
when they were fused to the GAL4 activation domain
but not when fused to the bait domain. AtFLS1 also
interacted with AtF3H and AtDFR in both configura-
tions. The only other positive result was for AtFLS5
fused to the GAL4 bait domain with AtDFR. These
findings are reminiscent of those reported previously
for AtCHS, AtCHI, and AtDFR (Burbulis and Winkel-
Shirley, 1999) and suggest that AtFLS1 may function as
yet another component of a flavonoid multienzyme
complex. Moreover, although AtFLS3 and AtFLS5 do
not have measurable enzyme activity, these proteins
appear to have retained the ability to interact physically
with other members of the central flavonoid biosyn-
thetic pathway and could conceivably play structural
and/or regulatory roles in flavonoid metabolism.

AtFLS1 to -6 in Planta Gene Function

To further investigate the possibility that AtFLS
genes play unanticipated roles in flavonoid biosyn-
thesis in planta, knockout lines were identified for
each of the genes in the SALK and GABI-KAT T-DNA
collections (Alonso et al., 2003; Rosso et al., 2003).
Homozygous lines were obtained in the Columbia
(Col) background for AtFLS2 (GABI 429B10), AtFLS3
(SALK_050041), AtFLS4 (SALK_002309), AtFLS5
(GABI 317E12), and AtFLS6 (SALK_003879) as de-
scribed in ‘‘Materials and Methods.’’ The only knock-
out candidate for AtFLS1, SALK_076420, was found to
be embryo lethal in the homozygous state (data not
shown). However, this insertion lies in the intergenic
region shared by AtFLS1 and a divergently transcribed
gene (At5g08630) that encodes a DDT domain-
containing protein of unknown function. Two other
T-DNA insertions, in the coding region of At5g08630
(SALK_004358 and SALK_039219), were also homo-
zygous lethal (data not shown), indicating that this
phenotype in the SALK_076420 line was due to dis-
ruption of the adjacent gene, not AtFLS1. A line
homozygous for an insertion in the 5# untranslated
region of AtFLS1, AJ588535, was subsequently recov-
ered in the ecotype Wassilewskija (Ws) background
from the INRA collection (Ortega et al., 2002).

Figure 5. AtFLS1, AtFLS3, and AtFLS5 enzyme activity. Recombinant AtFLS1 (solid line), AtFLS3 (dashed line), and AtFLS5
(dotted line) proteins were assayed with the substrates DHK (A), DHQ (B), and naringenin (C). HPLC scans extracted at 289 nm are
shown, with peaks labeled as DHK, DHQ, K (kaempferol), Q (quercetin), and N (naringenin). D, Analysis of the AtFLS1/AtFLS5
chimera. HPLC scans of assays of the AtFLS1/AtFLS5 chimera (solid line) and a thioredoxin negative control (dotted line) with
DHQ, DHK, and N or without substrate are shown. The inset shows the structure of the AtFLS1/AtFLS5 chimera formed from the
40 N-terminal amino acids of AtFLS1 and the 296 C-terminal amino acids of AtFLS5. Introduced amino acids are shown above the
structure.
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The T-DNA lines were then used to explore the
contributions of the AtFLS1 to -6 genes to flavonoid
biosynthesis. Extracts were prepared from whole seed-
lings and from flowers, in which these genes were
found to be expressed at high levels in the experiments
described above. The insertion in AtFLS1 resulted in a
substantial reduction in peaks with retention times
corresponding to those of quercetin and kaempferol,
and these peaks had different UV-visible light absorp-
tion spectra than did those from wild-type Ws and the
authentic standards (Fig. 7; supplemental material).
This suggested that these compounds in fls1 were
sinapate esters, not flavonols, similar to what is ob-
served in Arabidopsis CHS and F3H null mutants (Li
et al., 1993; Owens et al., 2008; Fig. 7B). To examine this
possibility further, seedling extracts were analyzed by
liquid chromatography-mass spectrometry (LC-MS);
surprisingly, small quantities of both quercetin and
kaempferol weredetected in fls1 (Supplemental Fig. S2).

The fls1 plants also exhibited a much more intense red
coloration of the hypocotyl and cotyledons during ger-
mination and at the base of the stalk of mature plants
comparedwith thewild type (data notshown). Analysis
of anthocyanidin levels in seedlings showed that fls1
seedlings accumulated approximately twice as much of
these pigments per gram dry weight as the wild-type
Ws counterpart (Fig. 7A). This apparent diversion of
flux into neighboring branch pathways is similar to
what has been reported for other flavonoid mutants,
such as banyuls, which is deficient in ANS (Devic et al.,
1999). In contrast, neither the fls3 and fls5 lines nor any
of the other FLS mutant lines exhibited a detectable ef-
fect on flavonol or anthocyanidin accumulation, either
in flowers or seedlings (Fig. 7A; supplemental material;
data not shown). This suggests that only AtFLS1 con-
tributes to flavonol synthesis in Arabidopsis.

The fls1 mutant also provides a new genetic tool for
exploring the role of flavonols in root gravitropism.

Figure 6. Structural analysis of the AtFLS1, -3, and -5 proteins. A, N-terminal sequence alignment showing the highly conserved
region that is altered or missing in AtFLS2 to -6 (highlighted in gray), including residues that are strictly conserved in the various
enzyme subclasses (shown in red). B, Homology models generated based on the crystal structure of AtANS (At4g22880) are shown
looking into the core of the jellyroll motif. The predicted Fe21-coordinating residues are shown in pink, and the
a-ketoglutarate binding residues are shown in green. The yellow region in AtFLS1 identifies the N-terminal fragment missing in
all other AtFLS isoforms. Regions colored orange in AtFLS3 and -5 are those with RMSD values greater than 2.75 Å relative to AtFLS1.
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Extensive work over the past several years with
Arabidopsis tt4 mutants has provided strong support
for a model in which flavonoids, and flavonols in
particular, function to slow auxin transport in specific
cell files in order to cause root curvature (Brown et al.,
2001; Buer and Muday, 2004; Lewis et al., 2007; Peer
and Murphy, 2007). To provide further support for the
specific role of flavonols, as opposed to other flavo-
noids, in this process, the gravity response of fls1 roots
was compared with that of tt4(8), an allele in the Ws
background, and the wild-type Ws. Surprisingly, nei-
ther tt4(8) nor fls1 exhibited a substantial difference in
the response of roots to gravity relative to the Ws wild
type (data not shown). This could reflect differences in
the ecotype that was used (Ws versus Col) compared
with previously published experiments. However,
both fls1 and tt4(8) showed a distinct difference from
Ws in the amount of variation in the response among
seedlings (Fig. 8). This suggests that, although the
overall response is similar in Ws, with or without
flavonols present, the precision of the response is
much higher in the presence of these compounds.
The similarity between fls1 and tt4(8) provides further
evidence that it is flavonols, and not other flavonoids,
that mediate root bending in response to gravity.

DISCUSSION

Gene families are common features of the genomes of
complex organisms, including plants (Jander and
Barth, 2007). Still, the finding that the Arabidopsis
genome contains six sequences with high homology to
FLS was surprising in that all other flavonoid enzymes
in this species appear to be encoded by single-copy
genes (Winkel, 2006). The presence of multiple AtFLS
genes suggested the possibility of differentially ex-
pressed isoforms with different substrate specificities.
This could explain the different relative levels of
kaempferol and quercetin that are present in various
tissues and under different environmental conditions
in Arabidopsis (Peer et al., 2001; Ryan et al., 2002;
Tohge et al., 2005; Kerhoas et al., 2006; Lea et al., 2007;
Stracke et al., 2007). It was also consistent with the
report by Wisman et al. (1998) that En-induced disrup-
tion of the AtFLS1 gene abolished quercetin accumula-
tion but had no effect on kaempferol levels, suggesting
that another source of FLS activity was present.

Therefore, we carried out a thorough biochemical
and genetic analysis of the six predicted AtFLS genes.
Unlike the situation for the putative Arabidopsis
cinnamyl alcohol dehydrogenase multigene family,
in which the products of six genes had high cinnamyl
alcohol dehydrogenase activity and three had low
activity (and eight additional genes were simply mis-
annotated; Kim et al., 2004), in this case only one of six
genes was found to encode a catalytically competent
protein. The products of the other five genes encode
products that appear to lack critical functional resi-
dues, as a result of premature stop codons (AtFLS2 and
-6), alternative splicing and missplicing (AtFLS4), or
loss of a small region near the 5# end of the gene that
may have resulted in further functional degeneration
of the downstream sequences (AtFLS3 and -5). Thus,
the theory that Arabidopsis uses different FLS genes to
mediate differential synthesis of quercetin and kaemp-
ferol in different tissue or cell types appears to be
incorrect. One possibility is that the FLS activity of the
ANS enzyme may contribute to the differential accu-
mulation of kaempferol and quercetin, as suggested by
Lillo et al. (2008). Differential expression of the F3#H
enzyme could also mediate these ratios, as illustrated
by the large increases in kaempferol levels observed in
Petunia flowers expressing an antisense construct for
F3#H (Lewis et al., 2006). In addition, recent work on
the PAP1 and PFG1-3 R2R3-MYB factors indicates that
this variation is regulated, at least in part, at the level
of gene expression, with a network of many different
transcription factors interacting with the various fla-
vonoid gene promoters to orchestrate the differential
biosynthesis of flavonoid products (Tohge et al., 2005;
Stracke et al., 2007).

This network of transcriptional control also explains
how AtCHS and AtFLS1 may be coordinately regu-
lated during development but differentially expressed
in response to parasitization by Orobanche. Even
though flavonoids are not required for the parasitiza-
tion process, in that the CHS mutant tt4(2YY6) is
just as efficiently parasitized as the wild type, CHS
may still contribute to the localized production of
flavonoids as part of the plant stress response system,
as parasitized tt4 plants accumulated a lower root
mass than wild-type controls (Westwood, 2000). The
lack of induction of the AtFLS1 promoter by the
parasite suggests that this does not involve FLS activ-
ity, which is surprising since flavonols are known to
have potent free radical-scavenging activity (Braca
et al., 2003).

It also remains to be explained how the fls1 T-DNA
knockout line produced small quantities of quercetin
and kaempferol at the seedling stage (Fig. 7; Supple-
mental Fig. S2) while fls1 En mutants accumulated
quercetin, both in UV-treated mature plants and in
seeds (Wisman et al., 1998; Routaboul et al., 2006).
Although it appears that none of the other AtFLS genes
contribute FLS activity, it is possible that AtANS is
able to do so (Turnbull et al., 2004; Lillo et al., 2008).
Like AtFLS1, AtANS can produce flavonols at high

Table I. Yeast two-hybrid analysis of interactions between AtFLS1,
-3, and -5 and other flavonoid enzymes

Enzyme AtFLS1 AtFLS3 AtFLS5

CHS 1/2a 1/2 1/2
CHI 2/2 2/2 2/2
F3H 1/1 NDb ND
DFR 1/1 2/2 2/1

aAtFLS fused to the activation domain/AtFLS fused to the binding
domain. bND, Not determined.
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efficiency in vitro from naringenin, DHK, and DHQ.
The fact that AtANS is not able to fully substitute for
AtFLS1 in vivo suggests that the intracellular organi-
zation and/or localization of the flavonoid pathway
could restrict the access of ANS to these intermediates.
Interestingly, AtANS also produces quercetin via an
alternative route, from its ‘‘natural’’ substrate, leuco-
cyanidin (Turnbull et al., 2000, 2004). Because querce-

tin is the preferred product of this reaction in vitro, it
has been suggested that the production of cyanidin
glycosides involves channeling of the flav-2-en-3,4-
diol intermediate directly from ANS to a flavonoid
glycosyltransferase (Nakajima et al., 2001; Turnbull
et al., 2003). This channel may be sufficiently ‘‘leaky’’
to allow some accumulation of quercetin, which is
uncovered in the fls1 mutant lines.

Figure 7. Effects of fls1, fls3, and fls5 mutations on flavonol and anthocyanidin levels in 4-d-old seedlings. A, Quercetin and
kaempferol levels were quantified by HPLC by extracting chromatograms at 365 nm and integrating peaks corresponding to
authentic standards. Anthocyanidin levels were determined spectrophotometrically. B, Representative UV-visible light spectra
for peaks in Ws and fls1 with retention times corresponding to quercetin (Q) and kaempferol (K) standards.
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If the AtFLS2 to -6 genes do not contribute to
flavonol biosynthesis, then what drove the duplication
of these genes at two sites far removed from AtFLS1 in
the Arabidopsis genome? Perhaps part of the expla-
nation has to do with the fact that AtFLS1 is located in
a 1-Mb region exhibiting the second highest level of
evidence of recent positive selection; this region of the
genome may thus have limited potential for diversifi-
cation and the evolution of new gene function (Clark
et al., 2007). Does the fact that the AtFLS2 to -6 genes
have apparently been maintained over substantial
evolutionary time indicate that they once had, or still
retain, functional importance? AtFLS4 and -6 appear to
be fully quiescent, nonfunctional pseudogenes. How-
ever, AtFLS2, -3, and -5 are still expressed in patterns
that partially overlap with that of AtFLS1. Yeast two-
hybrid assays suggest that AtFLS3 and -5 could com-
pete with AtFLS1 for interactions with other proteins,
perhaps during the assembly and/or localization of
the flavonoid enzyme complex.

The possibility also remains that all four expressed
FLS genes have other as yet unknown functions. We
recently reported that CHS and CHI are localized not
just at the endoplasmic reticulum but also in the
nucleus (Saslowsky et al., 2005), and this now also
appears to be the case for an (iso)flavone malonyl-
transferase from Medicago truncatula (Yu et al., 2008).
Therefore, these proteins may have ‘‘moonlighting’’
functions, similar to a growing list of enzymes in
plants and other organisms with functions indepen-
dent of their catalytic activities (Moore, 2004; Sriram
et al., 2005). It should also be noted that the Arabi-
dopsis genome also contains distant relatives of CHS,
CHI, F3H, and DFR, although with much less similar-
ity than for the FLS gene family (14%–44% amino acid
identity, and one exception, at 63%, for CHI; Supple-
mental Table S3; TAIR 7.0 genome sequence, released
April 23, 2007; Swarbreck et al., 2008). The phenotypes
of mutations in CHS, CHI, F3H, and DFR (tt4, tt5, tt6,
and tt3, respectively) indicate that the distant relatives
are unlikely to contribute directly to flavonoid biosyn-

thesis. Therefore, it appears that the gene family model
described for FLS, with one catalytically active mem-
ber and several pseudogenes, may also apply to other
flavonoid genes, particularly in the case of CHI. There
is also a growing awareness that the ‘‘promiscuity’’ of
metabolic enzymes such as ANS, as well as flavonoid
glycosyltransferases (Lim et al., 2004) and O-methyl-
transferases (Deavours et al., 2006), is more the rule
than the exception (Taglieber et al., 2007). These ‘‘al-
ternative’’ functions of otherwise well-characterized
proteins may represent new paradigms that must be
taken into account in efforts to develop framework
models of cellular metabolism.

MATERIALS AND METHODS

Plant Material and Growth Conditions

Arabidopsis (Arabidopsis thaliana) plants were grown in 7.5- 3 5.5- 3 5.5-cm

pots containing Sunshine Mix 1 soil (Sungro Horticulture Processing) in a

climate-controlled incubator (I-66LLVL; Percival Scientific) with a 16-/8-h

photoperiod, 45 mmol m22 s21 fluorescent light, and 20�C constant temper-

ature. The soil was amended with Osmocote controlled-release fertilizer

(Scotts) or weekly fertilizing with 0.015% (w/v) Miracle-Gro 15-30-15 (Scotts).

Under these conditions, inflorescence development was prominent at 6 weeks

after planting. Seedlings for the analysis of flavonol and anthocyanidin

content were grown on the surface of Murashige and Skoog/Suc/agar plates

under continuous light as described previously (Saslowsky and Winkel-

Shirley, 2001).

Sequence Analysis of the AtFLS Gene Family

Sequences for the six members of the AtFLS gene family in Col (AtFLS1,

accession no. At5g08640; AtFLS2, At5g63580; AtFLS3, At5g63590; AtFLS4,

At5g63595; AtFLS5, At5g63600; AtFLS6, At5g43935) were obtained from TAIR

and analyzed using Lasergene (DNAStar). Gene maps were prepared by

comparing Col and Ler sequences using published ESTs (TAIR) and cloned Ler

cDNAs (see below).

Construction of AtFLS Promoter-GUS Reporter Gene
Fusions, Arabidopsis Transformation, and

Histochemical Localization of GUS Activity

Intergenic regions upstream of the start codon of each AtFLS isoform (1,002

bp for AtFLS1, 1,109 bp for AtFLS2, 768 bp for AtFLS3, 645 bp for AtFLS4, and

Figure 8. Effects of the fls1 and tt4(8) mutations on
root gravitropism. Murashige and Skoog/Suc/agar
plates containing 4-d-old wild-type and mutant seed-
lings were rotated 90�, and root angles were measured
relative to the original direction of growth. Bar graph
shows the SD in bending angle for the tt4(8) and fls1
mutants versus the corresponding Ws wild type.
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1,374 bp for AtFLS5) were amplified from Ler genomic DNA by PCR using

Elongase (Invitrogen) or Taq polymerase, incorporating a SphI site in the

forward primers and HindIII in the reverse primers (Supplemental Table S1).

The fragments were first cloned into pBluescript KS1 (Stratagene) and

sequences were confirmed prior to subcloning into the BamHI/HindIII sites

in the binary vector pBI121 (Clontech), replacing the cauliflower mosaic virus

35S promoter. AtFLS:pGUS fusion constructs and positive and negative

controls (pBI121 and pBI101 vectors, respectively) were introduced into

Agrobacterium tumefaciens (GV3101) and then used to transform Ler plants

by the floral dip method (Clough and Bent, 1998). Ten independent transgenic

T1 lines were selected for each construct and control vector on solid

Murashige and Skoog growth medium with 0.005% (w/v) kanamycin. Trans-

genic lines were confirmed by PCR using the forward primers (Supplemental

Table S1) with a reverse primer complementary to the 5# end of the GUS gene,

5#-ACTTTGCCGTAATGAGTG-3#.

To test for the expression of promoter-GUS constructs, T2 plants were

grown on soil (six plants per pot) for 3, 9, 16, 23, 30, 37, 44, and 51 d as

described above or in a semihydroponic system for infection with Orobanche

aegyptiaca as described by Griffitts et al. (2004). GUS activity was assayed

using a histochemical procedure modified from Sieburth and Meyerowitz

(1997). Plants were submerged in 90% (v/v) 4�C acetone for 15 min and rinsed

in water, and soil particles were removed from roots using forceps. Plants

were then blotted on tissue paper, placed into microcentrifuge tubes, covered

with staining solution [50 mM phosphate buffer, pH 7.2, 0.5 mM K3Fe(CN)6,

0.5 mM K4Fe(CN)6, and 1 mM 5-bromo-4-chloro-3-indolyl-b-D-glucuronide

(cyclohexylammonium salt; Gold Biotechnology)], vacuum infiltrated three

times for 30 s at 5 to 10 Torr, and then incubated overnight at 37�C.

Chlorophyll was removed with subsequent rinses of 15%, 30%, 50%, 75%,

80%, and 100% (v/v) ethanol. GUS-stained plants were then transferred to

water in petri dishes (16 d or older plants) or onto glass microscope slides and

photographed using a digital camera system (3CCD; MIT) mounted on a

dissecting microscope (Stemi SVII Apo; Zeiss).

Determination of AtFLS Gene Expression by RT-PCR

Tissues from two independent biological replicates of representative

developmental stages were flash frozen in liquid nitrogen and stored at

280�C. Total RNA was extracted using the RNeasy Plant Mini Kit with

optional DNase treatment (Qiagen). cDNA was prepared from 5 mg of total

RNA in a 33-mL final volume using the NotI-d(T)18 primer and other standard

components included with the First-Strand cDNA Synthesis Kit (Amersham

Biosciences). The resulting cDNA served as a template for PCR amplification

of either 0.3 kb of each AtFLS isoform or 0.5 kb of b-tubulin (At5g62690; Chen

et al., 2003) as a control using the primers listed in Supplemental Table S1. RT-

PCRs contained 20 pmol of each primer, 2 mM deoxynucleoside triphosphate,

0.5 unit of Taq polymerase (New England Biolabs), and template cDNA (either

2.5 mL of cDNA for AtFLS reactions or 0.5 mL of cDNA for b-tubulin reactions).

Reactions used the following parameters: 94�C for 2 min, and 26 cycles of 94�C

for 30 s, 60�C (AtFLS1, AtFLS2, and b-tubulin) or 56�C (AtFLS3 and AtFLS5) for

30 s, and 72�C for 1 min. cDNA clones for AtFLS1, AtFLS2, AtFLS3, and AtFLS5

in pBluescript KS1 (described below) were used as a positive control for

cDNA amplification at 56�C and 60�C (50 ng of vector per reaction). These

constructs were also used to confirm the specificity of the primers. A second

independent (biological) replicate of this experiment was performed and

produced similar results.

AtFLS Cloning, Expression, and Activity Assays

The AtFLS1 coding region was amplified by PCR from cDNA generated

using the iScript cDNA Synthesis Kit (Bio-Rad) and RNA isolated with the

RNeasy Plant Mini Kit (Qiagen) from 15-d-old Arabidopsis Ler roots. The

AtFLS2 coding region was amplified by PCR from Arabidopsis Col EST clone

SQ202h01 (accession no. AV564339). AtFLS3 and AtFLS5 were amplified by

RT-PCR utilizing RNA isolated from 4-d-old Arabidopsis Ler seedlings using

the method described by Pelletier and Shirley (1996). All reactions used

primers that incorporated EcoRI and XhoI sites (Supplemental Table S1) to

allow cloning into the corresponding sites in pET32a (Novagen).

An AtFLS1/AtFLS5 chimeric construct was generated by amplifying a 925-

bp fragment from the SphI site in pET32a through the first 120 bp in AtFLS1

using the primers shown in Supplemental Table S1. The product was used to

replace the corresponding fragment in pET32a-AtFLS5. The integrity of all

clones was confirmed by DNA sequencing. It should be noted that although

the AtFLS1, -3, and -5 sequences were derived from the Ler ecotype, identical

products are encoded by the corresponding genes in Col.

The pET-FLS constructs were used to transform BL21(DE3) pLysS cells and

produce recombinant protein essentially as described by Pelletier et al. (1999).

Expression was induced by the addition of isopropylthio-b-galactoside to

1 mM final concentration and incubation for 4 h at room temperature and 250

rpm. Similar levels of expression were observed for all of the constructs, as

assessed by SDS-PAGE. Cells were harvested by centrifugation at 7,400g and

4�C for 10 min and stored at 280�C. Frozen cells were resuspended in 3 mL of

0.2 M Gly (pH 8.5) and lysed by sonication on ice. The resulting cell slurry was

centrifuged at 16,170g and 4�C for 40 min, and the supernatant was used as the

source of crude enzyme in activity assays.

FLS Activity Assays

The FLS assay was based on the method of Britsch and Grisebach (1986).

Each 100-mL reaction contained 10 mM a-ketoglutaric acid (disodium salt),

10 mM ascorbic acid, 0.25 mM ferrous sulfate, 50 mM Gly (pH 8.5), and 0.1 mM

substrate. All flavonoid compounds were dissolved in 80% HPLC-grade

methanol at a starting concentration of 10 mM. The ferrous sulfate solution was

prepared in 50 mM HEPES, pH 7.5, containing 10 mM ascorbic acid to inhibit

the oxidation of Fe21. All other assay components were suspended in 50 mM

HEPES, pH 7.5. The solutions were degassed under vacuum for 10 min,

equilibrated under N2 for 5 min, and again degassed under vacuum for 10 min

immediately before use.

Activity assays were performed at 25�C for up to 60 min using crude

extracts containing similar amounts of each recombinant protein (approxi-

mately 3.5–100 mg, depending on the experiment, as assessed by comparison

with a dilution series of bovine serum albumin on a Coomassie Blue-stained

SDS-PAGE gel). Reactions were initiated by the addition of substrate and

terminated by extraction with ethyl acetate (1:1, v/v), performed by adding

200 mL of ethyl acetate and mixing well for 1 min. Solvent layers were

separated by centrifugation at 13,000 rpm for 5 min. A 100-mL aliquot of the

organic layer was then reextracted with another 200 mL of ethyl acetate and

200 mL of the organic layer combined with the initial 100 mL of extract

(R. Lukacin, personal communication). The solvent was evaporated in a

SpeedVac under low heat. Dried samples were reconstituted in 50 mL of 80%

methanol, mixed for 5 min, and spun at 13,000 rpm.

Supernatants were analyzed by HPLC using a Waters system with a 2996

photodiode array and Millenium 3.2 or Empower 2 software. Samples were

kept at 4�C prior to analysis. A 20-mL aliquot was injected and fractionated at

room temperature as described by Pelletier and Shirley (1996), except that the

absorbance was monitored from 200 to 600 nm. The resulting data were

analyzed by extracting a single wavelength chromatogram at 289 nm; an

unidentified peak that coelutes with DHQ was subtracted from all of the

samples.

Protein Structure Modeling

Homology models were generated for AtFLS1, AtFLS3, and AtFLS5 based

on the crystal structure of Arabidopsis ANS (Wilmouth et al., 2002). The

sequence of each protein was aligned with ANS, and five models were

generated using MODELLER6 essentially as described by Dana et al. (2006).

These five structures were then combined by coordinated averaging with the

first structure used as the reference, and overlay was on the backbone to

generate a single structure. The resulting average structure was subjected to

500 steps of steepest descent minimization using the Sander module of

AMBER7. The structure was solvated, and the net charge of the system was

brought to zero by the addition of Na1 atoms using LeaP. Equilibration was

performed on the water and counter ions by molecular dynamics at constant

volume for 100 ps. The solvent and counter ions as well as the entire system

were subjected to 500 steps of steepest descent minimization. All molecular

dynamics calculations were performed using the AMBER94 force field with a

time step of 2 fs and coordinates collected every 1 ps. Molecular dynamics

consisted of an 80-ps heating phase to raise the temperature from 0 to 300 K, a

100-ps constant volume equilibration, and a 1-ns constant pressure phase. All

calculations were performed using up to eight processors on Virginia Tech’s

Laboratory for Advanced Scientific Computing and Applications Linux

cluster (Anantham). Final models were generated by coordinated averaging

from the last 100 ps of dynamics simulation and minimization data. The

solvent and Na1 ion coordinates were removed from the analyzed files using

the Vi text editor to improve the visualization of the model. Models were
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visualized and analyzed using DeepView/Swiss-Pdb Viewer v3.7 sp5 and

rendered with POV-ray v3.5. Structural comparisons were performed by

aligning the isoform homology models using the DeepView iterative magic fit

function and calculating the corresponding RMSD values.

Yeast Two-Hybrid Analysis

Coding regions for AtFLS1, AtFLS3, AtFLS5, and AtDFR were amplified

from the pET32a constructs described above and for AtF3H from a pBluescript

KS1 construct (Pelletier and Shirley, 1996) using the primers listed in

Supplemental Table S1. Each PCR product was then digested with SalI

(AtFLS1, AtFLS3, and AtDFR), XhoI (AtFLS5), or PstI (AtF3H) and NotI and

then inserted into the corresponding sites in the yeast two-hybrid vectors

pBI880 and pBI881 (Kohalmi et al., 1998). Plasmids were transformed into

Escherichia coli DH10B cells by electroporation. The sequence integrity of all

clones was confirmed by sequencing. HF7c yeast cells (Feilotter et al., 1994)

were transformed simultaneously with bait and prey constructs essentially as

described by Kohalmi et al. (1998). Several independent colonies from each

transformation were used to inoculate 2Leu2Trp broth and then cultured on

2Leu2Trp2His solid medium at 30�C.

Characterization of T-DNA Knockout Lines

Lines segregating for T-DNA insertions in the AtFLS1, -2, -3, -4, and -6 genes

were obtained from the SALK and INRA collections; homozygous T-DNA

knockout lines were obtained for AtFLS2 and AtFLS5 from GABI-KAT. These

included INRA AJ588535 (insertion in the 5# untranslated region of AtFLS1),

SALK_076420 (AtFLS1 promoter), GABI 429B10 (second intron of AtFLS2),

SALK_050041 (third exon of AtFLS3), SALK_002309 (third exon of AtFLS4),

GABI 317E12 (first intron of AtFLS5), and SALK_003879 (third intron of

AtFLS6). Homozygous lines were identified/confirmed by PCR analysis using

slight modifications of the method of Edwards et al. (1991) to extract genomic

DNA from one large leaf from each plant. In the first method, extraction was in

750 mL of 50 mM Tris, pH 8, and 10 mM EDTA, pH 8. Following incubation at

65�C for 10 min, 200 mL of 5 M KOAc was added and the sample was incubated

on ice for 20 min. The sample was then centrifuged at 13,000 rpm for 10 min,

the supernatant was mixed with 750 mL of isopropanol and spun at 13,000 rpm

for 10 min, and the pellet was rinsed twice in cold 80% ethanol. The pellet was

then resuspended in 1 mM Tris, pH 7.5, and 0.1 mM EDTA for 15 min at 37�C. In

the second method, extraction was in 350 mL of 200 mM Tris, pH 7.5, and 25 mM

EDTA, pH 7.5. The samples were incubated at 65�C for 10 min and centrifuged

at 13,000 rpm for 10 min, and the supernatant was mixed with an equivalent

volume of isopropanol followed by 5 min of incubation at room temperature.

The DNA was pelleted by centrifugation at 13,000 rpm for 10 min and then

resuspended overnight in 100 mL of distilled, deionized water. PCR was

performed using 1 to 2 mL of each sample with the primers and annealing

temperatures given in Supplemental Table S2 in a total volume of 10 to 20 mL.

PCR products were analyzed by agarose gel electrophoresis.

Anthocyanidin and Flavonol Assays

Four-day-old seedlings were collected in preweighed 2-mL cryotubes

(Corning) containing two 3-mm-diameter stainless steel balls, type 316 (Small

Parts). Tissue was then flash frozen in liquid nitrogen and freeze dried for 36

to 48 h in a lyophilizer in the same tubes. For HPLC analysis of flavonols,

50 mL of 1% acetic acid in 80% methanol was added per milligram of tissue dry

weight. Samples were ground by agitation for 3 min in a 5-G paint mixer

(IDEX) and then clarified by centrifugation at 13,000 rpm and 4�C for 15 min.

The samples were then hydrolyzed by the addition of an equal volume of 2 N

HCl, followed by incubation at 70�C for 40 min. An equal volume of 100%

methanol was added to prevent the precipitation of aglycones. Samples were

again centrifuged at 13,000 rpm and 4�C for 15 min and then analyzed by

HPLC as described above for the FLS activity assays, except that chromato-

grams were extracted at 365 nm. For spectrophotometric analysis of antho-

cyanidins, 30 mL of 1% HCl in methanol was added per milligram of tissue dry

weight. Samples were ground and clarified as above, except that centrifuga-

tion was at room temperature. The supernatant was mixed with two-thirds

volume of distilled, deionized water and then back extracted with an equiv-

alent volume of chloroform to remove chlorophyll. Samples were centrifuged

at 13,000 rpm for 10 min, and the upper, aqueous phase was mixed with two

volumes of 60% extraction buffer and 40% water. Absorbance at 530 and

657 nm was used to determine the relative levels of anthocyanidins in these

samples, as described by Mancinelli and Schwartz (1984). Three independent

biological replicates were analyzed for each genotype.

Gravitropism Assays

Seedlings were grown on the surface of Murashige and Skoog/2% Suc/

agar plates under continuous light at 23�C for 4 d. Plates were rotated 90�
relative to the initial growth orientation and placed at room temperature

under normal ambient light conditions. Seedlings were photographed every

30 min for the first 5 h, then every 60 min for another 5 h; a final photograph

was taken at 12 h. Changes in the angle of root tips relative to the original

orientation were measured using Photoshop and analyzed using Microsoft

Excel.

Supplemental Data

The following materials are available in the online version of this article.

Supplemental Figure S1. Effects on flavonol accumulation of T-DNA

insertions in the AtFLS genes.

Supplemental Figure S2. LC-MS analysis of flavonols in fls1.

Supplemental Table S1. Primers used in cloning and RT-PCR.

Supplemental Table S2. Primers and annealing temperatures used to

identify/confirm homozygous FLS knockout lines.

Supplemental Table S3. Arabidopsis flavonoid gene homologs.

Supplemental Materials and Methods S1. LC-MS analysis of plant

extracts.
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