12 research outputs found

    Kaempferol Regresses Carcinogenesis through a Molecular Cross Talk Involved in Proliferation, Apoptosis and Inflammation on Human Cervical Cancer Cells, HeLa

    Get PDF
    Kaempferol, a flavonoid, contains a plethora of therapeutic properties and has demonstrated its efficacy against cancer. This study aims to unravel the molecular targets that are being modulated by kaempferol on HeLa cells. Various assays were performed, namely: MTT assay, flow cytometry to analyze DNA content and quantitate apoptosis. Quantitative PCR and protein profiling were performed to evaluate the modulated manifestation of different genes involved in apoptosis, cell growth and inflammation. Kaempferol exhibited reduction in cell viability of HeLa cells (IC50 = 50 µM 48 h), whereas it did not show any significant effect on viability of the AC-16 cell line. Kaempferol-impacted apoptosis was definitive, as it induced DNA fragmentation, caused disruption of membrane potential, accumulation of cells in the G2-M phase and augmented early apoptosis. Consistently, kaempferol induced apoptosis in HeLa cells by modulating the expression of various genes at both transcript and protein levels. It upregulated the expression of pro-apoptotic genes, including APAF1, BAX, BAD, Caspases 3, and 9, etc., at the transcript level and Bad, Bax, p27, p53, p21, Caspases 3 and 8 etc. at the protein level, while it downregulated the expression of pro-survival gene BCL-2, BIRC8, MCL-1, XIAP, and NAIP at the transcript level and Bcl-2, XIAP, Livin, clap-2 at the protein level. Kaempferol attenuated oxidative stress by upregulating GSH activity and anti-inflammatory response by suppressing NF-kB pathways. Moreover, kaempferol averted rampant cell division and induced apoptosis by modulating AKT/MTOR and MAP kinase pathways. Hence, kaempferol can be considered as a natural therapeutic agent with a differential profile

    Development of 3D-Bioprinted Colitis-Mimicking Model to Assess Epithelial Barrier Function Using Albumin Nano-Encapsulated Anti-Inflammatory Drugs.

    Get PDF
    Physiological barrier function is very difficult to replicate in vitro. This situation leads to poor prediction of candidate drugs in the drug development process due to the lack of preclinical modelling for intestinal function. By using 3D bioprinting, we generated a colitis-like condition model that can evaluate the barrier function of albumin nanoencapsulated anti-inflammatory drugs. Histological characterization demonstrated the manifestation of the disease in 3D-bioprinted Caco-2 and HT-29 constructs. A comparison of proliferation rates in 2D monolayer and 3D-bioprinted models was also carried out. This model is compatible with currently available preclinical assays and can be implemented as an effective tool for efficacy and toxicity prediction in drug development

    An overview of vaccine development for COVID-19

    Get PDF
    The COVID-19 pandemic continues to endanger world health and the economy. The causative SARS-CoV-2 coronavirus has a unique replication system. The end point of the COVID-19 pandemic is either herd immunity or widespread availability of an effective vaccine. Multiple candidate vaccines - peptide, virus-like particle, viral vectors (replicating and nonreplicating), nucleic acids (DNA or RNA), live attenuated virus, recombinant designed proteins and inactivated virus - are presently under various stages of expansion, and a small number of vaccine candidates have progressed into clinical phases. At the time of writing, three major pharmaceutical companies, namely Pfizer and Moderna, have their vaccines under mass production and administered to the public. This review aims to investigate the most critical vaccines developed for COVID-19 to date

    The viral capsid as novel nanomaterials for drug delivery

    Get PDF
    The purpose of this review is to highlight recent scientific developments and provide an overview of virus self-assembly and viral particle dynamics. Viruses are organized supramolecular structures with distinct yet related features and functions. Plant viruses are extensively used in biotechnology, and virus-like particulate matter is generated by genetic modification. Both provide a material-based means for selective distribution and delivery of drug molecules. Through surface engineering of their capsids, virus-derived nanomaterials facilitate various potential applications for selective drug delivery. Viruses have significant implications in chemotherapy, gene transfer, vaccine production, immunotherapy and molecular imaging

    Comparative Analysis of the Effect of Different Concentrations of Dextran Sodium Sulfate on the Severity and Extent of Inflammation in Experimental Ulcerative Colitis

    No full text
    Several chemicals, such as dextran sulfate sodium (DSS), oxazolone, acetic acid, and trinitrobenzene sulphonic acid (TNBS), have been used for establishing animal models of ulcerative colitis. These animal models help us to study or explore several factors involved in the etiology or pathogenesis of ulcerative colitis. They are also useful tools to design and develop effective drug delivery strategies. DSS is the most widely used tool to induce colitis in animals. The model of ulcerative colitis developed by this method effectively mimics the colitis condition in humans. The amount of DSS in drinking water can be adjusted to control the severity of colitis, such as acute or chronic inflammation. However, a miscalculation in the amount of DSS produces severe inflammation, which may lead to the death of mice. DSS has been shown to rupture the epithelial lining and induce infiltration of inflammatory markers such as TNF, interferons, and interleukins. The current study aims to study the effects of different amounts of DSS on weight loss, changes in colon length, and histological scoring. Furthermore, the main objective of this study was to find an optimum concentration of DSS to establish a mouse model for ulcerative colitis. Based on the disease index, weight loss, bleeding, histological studies, and colon length, 2.5% w/v DSS for 7 days in water was found to be adequate for the DSS-induced colitis model for a moderate level of colitis, and 3.5% w/v DSS could be used to study severe experimental colitis

    Tamarix articulata Induced Prevention of Hepatotoxicity Effects of In Vivo Carbon Tetrachloride by Modulating Pro-Inflammatory Serum and Antioxidant Enzymes to Reverse the Liver Fibrosis

    No full text
    This study evaluates the hepatoprotective activity of a Tamarix articulata extract against carbon tetrachloride-mediated hepatotoxicity in Wistar rats. Our results demonstrated that the oral administration of Tamarix articulata extract (50 mg/kg b.w.) significantly restored the serum levels of liver enzymes and antioxidant parameters (superoxide dismutase, catalase, glutathione reductase, and thiobarbituric reactive substances). Histopathology analysis revealed that Tamarix articulata extract significantly reduced hepatic fibrosis by inhibiting the necrosis of hepatocytes. Furthermore, serum pro-inflammatory (tumor necrosis factor-alpha, tumor growth factor-beta, and interleukin-6) markers were significantly restored. However, the anti-inflammatory cytokine adiponectin levels increased to normal levels in the group treated with Tamarix articulata extract. Additionally, we observed diminished reactive oxygen species production and the depolarization of mitochondrial membrane potential in hepatocytes extracted from animal livers treated with Tamarix articulata extract. Our findings suggest that Tamarix articulata extract prevents liver fibrosis induced by carbon tetrachloride and decreases the necrotic population of hepatocytes. These events restored the antioxidant enzymatic activity, serum levels of liver enzymes, and pro-inflammatory markers to their normal levels

    6-Gingerol, a Major Ingredient of Ginger Attenuates Diethylnitrosamine-Induced Liver Injury in Rats through the Modulation of Oxidative Stress and Anti-Inflammatory Activity

    No full text
    Diethylnitrosamine (DEN) is a well-known hepatocarcinogen, and its oral administration causes severe liver damage including cancer. DEN induces the pathogenesis of the liver through reactive oxygen species mediated inflammation and modulation of various biological activities. 6-Gingerol, a major component of ginger, is reported to prevent liver diseases by reducing the oxidative stress and proinflammatory mediators. The present study investigated the hepatoprotective effects of 6-gingerol through the measurement of oxidative stress, anti-inflammatory markers, liver function enzyme parameter, and histopathological analysis. The rats were randomly divided into four groups as the control, DEN treated (50 mg/kg b.w.), DEN+6-gingerol (each 50 mg/kg b.w.), and 6-gingerol only. To evaluate the hepatoprotective effects, liver function enzymes (ALT, AST, and ALP), oxidative stress markers (SOD, GSH, GST, and TAC), lipid peroxidation, inflammatory markers (CRP, TNF-α, IL-6, and ICAM1), haematoxylin and eosin staining, Sirius red staining, immunohistochemistry, and electron microscopy were performed. The results showed a significant increase in liver function enzymes, oxidative stress, and inflammatory markers in the DEN-treated group as compared to the control group. Besides this, altered architecture of hepatocytes (infiltration of inflammatory cells, congestion, blood vessel dilation, and edema), abundant collagen fiber and organelle structures like distorted shaped and swollen mitochondria, and broken endoplasmic reticulum were noticed. The administration of 6-gingerol significantly ameliorated the biochemical and histopathological changes. The increased expression of TNF-α protein was noticed in the DEN-treated group whereas the administration of 6-gingerol significantly decreased the expression of this protein. Based on these findings, it can be suggested that 6-gingerol may be an alternative therapy for the prevention and treatment of liver diseases

    Phytantriol-Based Berberine-Loaded Liquid Crystalline Nanoparticles Attenuate Inflammation and Oxidative Stress in Lipopolysaccharide-Induced RAW264.7 Macrophages

    No full text
    Inflammation and oxidative stress are interrelated processes that represent the underlying causes of several chronic inflammatory diseases that include asthma, cystic fibrosis, chronic obstructive pulmonary disease (COPD), allergies, diabetes, and cardiovascular diseases. Macrophages are key initiators of inflammatory processes in the body. When triggered by a stimulus such as bacterial lipopolysaccharides (LPS), these cells secrete inflammatory cytokines namely TNF-α that orchestrate the cellular inflammatory process. Simultaneously, pro-inflammatory stimuli induce the upregulation of inducible nitric oxide synthase (iNOS) which catalyzes the generation of high levels of nitric oxide (NO). This, together with high concentrations of reactive oxygen species (ROS) produced by macrophages, mediate oxidative stress which, in turn, exacerbates inflammation in a feedback loop, resulting in the pathogenesis of several chronic inflammatory diseases. Berberine is a phytochemical embedded with potent in vitro anti-inflammatory and antioxidant properties, whose therapeutic application is hindered by poor solubility and bioavailability. For this reason, large doses of berberine need to be administered to achieve the desired pharmacological effect, which may result in toxicity. Encapsulation of such a drug in liquid crystalline nanoparticles (LCNs) represents a viable strategy to overcome these limitations. We encapsulated berberine in phytantriol-based LCNs (BP-LCNs) and tested the antioxidant and anti-inflammatory activities of BP-LCNs in vitro on LPS-induced mouse RAW264.7 macrophages. BP-LCNs showed potent anti-inflammatory and antioxidant activities, with significant reduction in the gene expressions of TNF-α and iNOS, followed by concomitant reduction of ROS and NO production at a concentration of 2.5 µM, which is lower than the concentration of free berberine concentration required to achieve similar effects as reported elsewhere. Furthermore, we provide evidence for the suitability for BP-LCNs both as an antioxidant and as an anti-inflammatory agent with potential application in the therapy of chronic inflammatory diseases

    Fungal-Based Remediation in the Treatment of Anthropogenic Activities and Pharmaceutical-Pollutant-Contaminated Wastewater

    No full text
    Pharmaceutical personal care products (PPCPs) have increased in consumption due to the worldwide post-pandemic situation, marking them as chemical and pathogenic pollutants in significantly higher concentrations than ever in the ecosystem. Considering the inexplicable levels of these chemical residues discharged into the environment, concerns have been raised regarding their probable ecotoxicity to marine and terrestrial life. A further concern is the potential for developing and spreading antibiotic-resistant microorganisms and genes in aquatic ecosystems due to antibiotic exposure. Hence, knowing how these compounds impact aquatic ecosystem functioning is imperative, and thus is a critical area of research. The ecological risk analysis of PPCPs in aquatic ecosystems has been carried out using various strategies. Previous studies have reported numerous approaches for eliminating these PPCPs, including conventional treatment methods, activated sludge processes, generated wetlands, biological remediation, sequencing batch reactors, phytoremediation, and membrane bioreactors. In terms of green biotechnology approaches, the current research aims to discover effective procedures for removing PPCPs and their emerging resources as pollutants. Therefore, this review focuses on the over-extensive utilization of PPCPs and their emergent sources responsible for the contamination and environmental threat for future wastewater purposes. Further, as fungi and their enzymes and derivatives can remove pharmaceuticals and personal care products from wastewater through oxidation and several processes, they have attracted the attention of the scientific community due to their ability to remove PPCPs as pollutants and their status as emerging resources in wastewater. This review examines the fundamental approach and progress of the bioremediation of pharmaceutical- and personal-care-contaminated wastewater using fungal-based systems. It also discusses mechanistic approaches through hybridizing cultures and other biological systems with fungal strains, current technologies, and prospects for future research on PPCPs in wastewater treatment
    corecore