8 research outputs found

    B cell antigen receptor-induced activation of an IRAK4-dependent signaling pathway revealed by a MALT1-IRAK4 double knockout mouse model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The B cell antigen receptor (BCR) and pathogen recognition receptors, such as Toll-like receptor 4 (TLR4), act in concert to control adaptive B cell responses. However, little is known about the signaling pathways that integrate BCR activation with intrinsic TLR4 stimulation. Antigen receptors initialize activation of the inducible transcription factor nuclear factor-ÎșB (NF-ÎșB) via recruitment of the membrane-associated guanylate kinase caspase recruitment domain protein 11 (CARD11), the adapter molecule B cell CLL/lymphoma 10 (BCL10), and the "paracaspase" mucosa-associated lymphoid tissue lymphoma translocation gene 1 (MALT1) into lipid rafts. Upon BCR triggering, this activation strictly depends on BCL10, but not on MALT1, leading to the hypothesis that a MALT1-independent NF-ÎșB activation pathway contributes to BCR-induced NF-ÎșB activation downstream of BCL10. The identity of this pathway has remained elusive.</p> <p>Results</p> <p>Using genetic and biochemical approaches, we demonstrate that the IRAK4- and IRAK1-dependent TLR signaling branch is activated upon BCR triggering to induce partial NF-ÎșB activation. BCR-induced MALT1-independent IÎșB degradation and B cell proliferation were inhibited in MALT1/IRAK4 double knockout B cells. Moreover, IRAK1 was recruited into lipid rafts upon BCR stimulation and activated following transient recruitment of IRAK4.</p> <p>Conclusion</p> <p>We propose that the observed crosstalk between BCR and TLR signaling components may contribute to the discrimination of signals that emanate from single and dual receptor engagement to control adaptive B cell responses.</p

    DC Respond to Cognate T Cell Interaction in the Antigen-Challenged Lymph Node

    Get PDF
    Dendritic cells (DC) are unrivaled in their potential to prime naive T cells by presenting antigen and providing costimulation. DC are furthermore believed to decode antigen context by virtue of pattern recognition receptors and to polarize T cells through cytokine secretion toward distinct effector functions. Diverse polarized T helper (TH) cells have been explored in great detail. In contrast, studies of instructing DC have to date largely been restricted to in vitro settings or adoptively transferred DC. Here we report efforts to unravel the DC response to cognate T cell encounter in antigen-challenged lymph nodes (LN). Mice engrafted with antigen-specific T cells were immunized with nanoparticles (NP) entrapping adjuvants and absorbed with antigen to study the immediate DC response to T cell encounter using bulk and single cell RNA-seq profiling. NP induced robust antigen-specific TH1 cell responses with minimal bystander activation. Fluorescent-labeled NP allowed identification of antigen-carrying DC and focus on transcriptional changes in DC that encounter T cells. Our results support the existence of a bi-directional crosstalk between DC and T cells that promotes TH1 responses, including involvement of the ubiquitin-like molecule Isg15 that merits further study

    USP8 – Another DUB in the T cell club

    No full text

    CARD6 Is Interferon Inducible but Not Involved in Nucleotide-Binding Oligomerization Domain Protein Signaling Leading to NF-ÎșB Activation▿

    No full text
    We have previously reported the cloning and characterization of CARD6, a caspase recruitment domain (CARD)-containing protein that is structurally related to the interferon (IFN)-inducible GTPases. CARD6 associates with microtubules and with receptor-interacting protein 2 (RIP2). RIP2 mediates NF-ÎșB activation induced by the intracellular nucleotide-binding oligomerization domain (NOD) receptors that sense bacterial peptidoglycan. Here we report that the expression of CARD6 and RIP2 in bone marrow-derived macrophages is rapidly induced by beta IFN and gamma IFN. This IFN-induced upregulation of CARD6 is suppressed by lipopolysaccharide (LPS), in contrast to LPS's enhancement of IFN-induced RIP2 upregulation. We generated CARD6-deficient (CARD6−/−) mice and carried out extensive analyses of signaling pathways mediating innate and adaptive immune responses, including the NOD pathways, but did not detect any abnormalities. Moreover, CARD6−/− mice were just as susceptible as wild-type mice to infection by Salmonella enterica serovar Typhimurium, Listeria monocytogenes, Candida albicans, lymphocytic choriomeningitis virus, or mouse adenovirus type 1. Thus, although structural and in vitro analyses strongly suggest an important role for CARD6 in immune defense, the physiological function of CARD6 remains obscure

    The ubiquitin-specific protease USP8 is critical for the development and homeostasis of T cells

    Full text link
    The modification of proteins by ubiquitin has a major role in cells of the immune system and is counteracted by various deubiquitinating enzymes (DUBs) with poorly defined functions. Here we identified the ubiquitin-specific protease USP8 as a regulatory component of the T cell antigen receptor (TCR) signalosome that interacted with the adaptor Gads and the regulatory molecule 14-3-3ÎČ. Caspase-dependent processing of USP8 occurred after stimulation of the TCR. T cell-specific deletion of USP8 in mice revealed that USP8 was essential for thymocyte maturation and upregulation of the gene encoding the cytokine receptor IL-7Rα mediated by the transcription factor Foxo1. Mice with T cell-specific USP8 deficiency developed colitis that was promoted by disturbed T cell homeostasis, a predominance of CD8(+) γΎ T cells in the intestine and impaired regulatory T cell function. Collectively, our data reveal an unexpected role for USP8 as an immunomodulatory DUB in T cells
    corecore