1,557 research outputs found

    Update on asthma prevalence in severe COVID-19 patients

    Get PDF
    info:eu-repo/semantics/publishedVersio

    Telehealth: The future is now in allergy practice

    Get PDF
    info:eu-repo/semantics/publishedVersio

    Epithelial Keratins Modulate cMet Expression and Signaling and Promote InlB-Mediated Listeria monocytogenes Infection of HeLa Cells

    Get PDF
    The host cytoskeleton is a major target for bacterial pathogens during infection. In particular, pathogens usurp the actin cytoskeleton function to strongly adhere to the host cell surface, to induce plasma membrane remodeling allowing invasion and to spread from cell to cell and disseminate to the whole organism. Keratins are cytoskeletal proteins that are the major components of intermediate filaments in epithelial cells however, their role in bacterial infection has been disregarded. Here we investigate the role of the major epithelial keratins, keratins 8 and 18 (K8 and K18), in the cellular infection by Listeria monocytogenes. We found that K8 and K18 are required for successful InlB/cMet-dependent L. monocytogenes infection, but are dispensable for InlA/E-cadherin-mediated invasion. Both K8 and K18 accumulate at InlB-mediated internalization sites following actin recruitment and modulate actin dynamics at those sites. We also reveal the key role of K8 and K18 in HGF-induced signaling which occurs downstream the activation of cMet. Strikingly, we show here that K18, and at a less extent K8, controls the expression of cMet and other surface receptors such TfR and integrin β1, by promoting the stability of their corresponding transcripts. Together, our results reveal novel functions for major epithelial keratins in the modulation of actin dynamics at the bacterial entry sites and in the control of surface receptors mRNA stability and expression.This work received funding from Norte-01-0145-FEDER-000012 - Structured program on bioengineered therapies for infectious diseases and tissue regeneration, supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (FEDER). Publication Fees were supported by ICBAS, University of Porto. RC received an FCT Doctoral Fellowship (SFRH/BD/90607/2012) and IP-C a FCT Post-Doctoral Fellowship (SFRH/BPD/107901/2015) through FCT/MEC co-funded by QREN and POPH (Programa Operacional Potencial Humano). SS was supported by FCT Investigator program (COMPETE, POPH, and FCT). We thank IBMC facilities for technical assistance

    Real-world data from the Portuguese Nivolumab Expanded Access Program (EAP) in previously treated Non Small Cell Lung Cancer (NSCLC).

    Get PDF
    OBJECTIVE: The main aim of the study was to evaluate the efficacy and safety profile of Nivolumab, an immune-checkpoint-inhibitor antibody, in advanced, previously treated, Non-Small Cell Lung Cancer (NSCLC) patients, in a real world setting. METHODS: We performed a retrospective, multicentre data analysis of patients who were included in the Portuguese Nivolumab Expanded Access Program (EAP). Eligibility criteria included histologically or citologically confirmed NSCLC, stage IIIB and IV, evaluable disease, sufficient organ function and at least one prior line of chemotherapy. The endpoints included Overall Response Rate (ORR), Disease Control Rate (DCR), Progression Free Survival (PFS) and Overall Survival (OS). Safety analysis was performed with the National Cancer Institute Common Terminology Criteria for Adverse Events (CTCAE), version 4.0, and immune-related Adverse Events (irAEs) were treated according to protocol treatment guidelines. Tumour response was assessed using the Response Evaluation Criteria in Solid Tumours (RECIST) version 1.1. Data was analysed using SPSS, version 21.0 (IBM Statistics). RESULTS: From June 2015 to December 2016, a total of 229 patients with advanced NSCLC were enrolled at 30 Portuguese centres. Clinical data were collected up to the end of July 2018. The baseline median age was 64 years (range 37-83) and the majority of patients were males (70.3%) and former/current smokers (69.4%). Patients with non-squamous histology predominated (88.1%), and 67.6% of the patients had received 2 or more prior lines of chemotherapy. Out of 229 patients, data was available for 219 patients (3 patients did not start treatment, while data was unavailable in 7 patients); of the 219 patients, 15.5% were not evaluated for radiological tumour assessment, 1.4% had complete response (CR), 21% partial response (PR), 31% stable disease (SD) and 31.1% progressive disease (PD). Thus, the ORR was 22.4% and DCR was 53.4% in this population. At the time of survival analysis the median PFS was 4.91 months (95% CI, 3.89-6.11) and median OS was 13.21 months (95% CI, 9.89-16.53). The safety profile was in line with clinical trial data. CONCLUSIONS: Efficacy and safety results observed in this retrospective analysis were consistent with observations reported in clinical trials and from other centres.info:eu-repo/semantics/publishedVersio

    Limited genomic divergence between intraspecific forms of Culex pipiens under different ecological pressures

    Get PDF
    Abstract Background: Divergent selection can be a major driver of ecological speciation. In insects of medical importance, understanding the speciation process is both of academic interest and public health importance. In the West Nile virus vector Culex pipiens, intraspecific pipiens and molestus forms vary in ecological and physiological traits. Populations of each form appear to share recent common ancestry but patterns of genetic differentiation across the genome remain unknown. Here, we undertook an AFLP genome scan on samples collected from both sympatric and allopatric populations from Europe and the USA to quantify the extent of genomic differentiation between the two forms. Results: The forms were clearly differentiated but each exhibited major population sub-structuring between continents. Divergence between pipiens and molestus forms from USA was higher than in both inter- and intra-continental comparisons with European samples. The proportion of outlier loci between pipiens and molestus (≈3 %) was low but consistent in both continents, and similar to those observed between sibling species of other mosquito species which exhibit contemporary gene flow. Only two of the outlier loci were shared between inter-form comparisons made within Europe and USA. Conclusion: This study supports the molestus and pipiens status as distinct evolutionary entities with low genomic divergence. The low number of shared divergent loci between continents suggests a relatively limited number of genomic regions determining key typological traits likely to be driving incipient speciation and/or adaptation of molestus to anthropogenic habitats

    Bioaccessibility and intestinal uptake of minerals from different types of home-cooked and ready-to-eat beans

    Get PDF
    Limited information exists on the bioaccessibility and intestinal uptake of essential minerals from different types of beans cooked through different cooking methods. This study aimed to estimate the in vitro bioaccessibility and intestinal uptake of the essential minerals K, Ca, Mg, Fe, Zn, Mn, Cu and Mo from four different types of beans (kidney, black, white and cowpea) cooked under different conditions (home-cooked and industrially processed canned product). Results showed that the bioaccessibility and uptake of most essential minerals is higher in canned beans. Mn was the mineral that presented the highest bioaccessibility (43–63%), and Mo had the lowest (3–36%). The highest uptake was observed for Mg (59.9%), while the lowest was found for Fe (10.5%). Regarding the type of beans, white beans presented the highest bioaccessibility and uptake for all the analyzed essential minerals and thus its consumption is preferable from a nutritional point of view.Edgar Pinto and César Oliveira acknowledge Instituto de Ciências e Tecnologias Agrárias e Agro-Alimentares da Universidade do Porto (ICETA) for their contracts NORTE-01-0145-FEDER-0001 and NORTE-01-0145-FEDER-000011, respectively. This work received financial support from the European Union (POCI/01/0145/FEDER/007265), from the European Regional Development Fund (ERDF) through COMPETE – Operational Competitiveness Programme and from national funds provided by FCT – Foundation for Science and Technology under the project UID/QUI/50006/2013.info:eu-repo/semantics/publishedVersio

    Microbiological, histological, immunological, and toxin response to antibiotic treatment in the mouse model of Mycobacterium ulcerans disease.

    Get PDF
    Mycobacterium ulcerans infection causes a neglected tropical disease known as Buruli ulcer that is now found in poor rural areas of West Africa in numbers that sometimes exceed those reported for another significant mycobacterial disease, leprosy, caused by M. leprae. Unique among mycobacterial diseases, M. ulcerans produces a plasmid-encoded toxin called mycolactone (ML), which is the principal virulence factor and destroys fat cells in subcutaneous tissue. Disease is typically first manifested by the appearance of a nodule that eventually ulcerates and the lesions may continue to spread over limbs or occasionally the trunk. The current standard treatment is 8 weeks of daily rifampin and injections of streptomycin (RS). The treatment kills bacilli and wounds gradually heal. Whether RS treatment actually stops mycolactone production before killing bacilli has been suggested by histopathological analyses of patient lesions. Using a mouse footpad model of M. ulcerans infection where the time of infection and development of lesions can be followed in a controlled manner before and after antibiotic treatment, we have evaluated the progress of infection by assessing bacterial numbers, mycolactone production, the immune response, and lesion histopathology at regular intervals after infection and after antibiotic therapy. We found that RS treatment rapidly reduced gross lesions, bacterial numbers, and ML production as assessed by cytotoxicity assays and mass spectrometric analysis. Histopathological analysis revealed that RS treatment maintained the association of the bacilli with (or within) host cells where they were destroyed whereas lack of treatment resulted in extracellular infection, destruction of host cells, and ultimately lesion ulceration. We propose that RS treatment promotes healing in the host by blocking mycolactone production, which favors the survival of host cells, and by killing M. ulcerans bacilli

    Cdc42 defines apical identity and regulates epithelial morphogenesis by promoting apical recruitment of Par6-aPKC and Crumbs

    Get PDF
    Cdc42 regulates epithelial morphogenesis together with the Par complex (Baz/Par3-Par6-aPKC), Crumbs (Crb/CRB3) and Stardust (Sdt/PALS1). However, how these proteins work together and interact during epithelial morphogenesis is not well understood. To address this issue, we used the genetically amenable Drosophila pupal photoreceptor and follicular epithelium. We show that during epithelial morphogenesis active Cdc42 accumulates at the developing apical membrane and cell-cell contacts, independently of the Par complex and Crb. However, membrane localization of Baz, Par6-aPKC and Crb all depend on Cdc42. We find that although binding of Cdc42 to Par6 is not essential for the recruitment of Par6 and aPKC to the membrane, it is required for their apical localization and accumulation, which we find also depends on Par6 retention by Crb. In the pupal photoreceptor, membrane recruitment of Par6-aPKC also depends on Baz. Our work shows that Cdc42 is required for this recruitment and suggests that this factor promotes the handover of Par6-aPKC from Baz onto Crb. Altogether, we propose that Cdc42 drives morphogenesis by conferring apical identity, Par-complex assembly and apical accumulation of Crb

    Valorisation of red beet waste: one-step extraction and separation of betalains and chlorophylls using thermoreversible aqueous biphasic systems

    Get PDF
    Globally, up to 50% of root crops, fruits and vegetables produced is wasted. Beetroot stems and leaves fit into this scenario, with only a small fraction being used in cattle food. One way of approaching this problem is through their valorisation, by extracting and recovering valuable compounds present in this type of waste that could be used in other applications, while contributing towards a circular economy. In this work, a new integrated process using thermoreversible aqueous biphasic systems (ABS) composed of quaternary ammonium-based ionic liquids (ILs) and polypropyleneglycol 400 g mol−1 (PPG) is shown to allow the one-step extraction and separation of two pigment classes—betalains and chlorophylls—from red beet stems and leaves. The pigment extraction was carried out with a monophasic aqueous solution of the IL and PPG, whose phase separation was then achieved by a temperature switch, resulting in the simultaneous separation of chlorophylls and betalains into opposite phases. A central composite design was used to optimise the extraction parameters (time, temperature, and solid : liquid (S/L) ratio) of both pigment extraction yields, reaching at 20 °C, 70 min and a S/L ratio of 0.12 a maximum extraction yield of 6.67 wt% for betalains and 1.82 wt% for chlorophylls (per weight of biomass). Moreover, it is shown that aqueous solutions of ILs better stabilise betalains than the gold standard solvent used for the extraction method. Among the studied systems, the ABS comprising the IL N-ethyl-N-methyl-N,N-bis(2-hydroxyethyl) bromide ([N21(2OH)(2OH)]Br) presented the best separation performance, with an extraction efficiency of 92% and 95% for chlorophylls and betalains, respectively, for opposite phases. The pigments were removed from the respective phases using affinity resins, with high recoveries: 96% for betalains and 98% for chlorophylls, further allowing the IL reuse. Finally, the cyto- and ecotoxicities of the quaternary ammonium-based ILs were determined. The obtained results disclosed low to negligible toxicity in the thousands of mg L−1 range, with [N21(2OH)(2OH)]Br being harmless from an ecotoxicological point of view. Overall, it is shown here that the developed process is an innovative approach for the one-step extraction and selective separation of pigments contributing to the valorisation of waste biomass
    corecore