33 research outputs found
Upscaling of water flow and mass transport in a tropical soil: numerical, laboratory and field studies
Los modelos numéricos son herramientas fundamentales para realizar predicciones de muchos problemas enfrentados por ingenieros geotécnicos y geoambientales. Sin embargo, para que estos modelos puedan realizar predicciones confiables, los parámetros de entrada del modelo deben ser estimados considerando el efecto escala. En este contexto, esta tesis se concentra en las reglas del cambio de escala de los parámetros de flujo y transporte de masa en un suelo tropical a través de estudios numéricos, de laboratorio y de campo. Esta está organizada en cuatro partes.
Primero, la heterogeneidad, correlación y correlación cruzada entre los parámetros de transporte de solutos (dispersividad, ¿, y coeficiente de partición, Kd) y las propiedades del suelo fueron estudiadas en detalle. En esta parte fue verificado que la conductividad hidráulica (K) y los parámetros de transporte de solutos son altamente heterogéneos, mientras que las propiedades del suelo no lo son. La correlación espacial de ¿ y K con variables estadísticamente significativas fue estudiada. Este resultado probablemente podrá mejorar la estimación en casos de estudios de pequeña escala debido a que solo fue observada correlaciones de hasta 2,5 m. Este estudio fue un primer intento de evaluar la variación espacial en el coeficiente de correlación de los parámetros de transporte de un soluto reactivo y de un no reactivo, indicando las variables más relevantes y aquella que debería ser incluida en estudios futuros.
En la segunda parte, el efecto escala en K, dispersividad y coeficiente de partición de potasio y clorito fue estudiado experimentalmente a través de experimentos de laboratorio y de campo. El objetivo de esta parte fue contribuir a la discusión sobre el efecto escala en K, ¿ y Kd, y entender como estos parámetros se comportan con el cambio de escala de medición. La dispersividad tiende a aumentar con la altura de la muestra de manera exponencial. El coeficiente de partición tiende a aumentar con la altura, el diámetro y el volumen de la muestra. Estas diferencias encontradas en los parámetros de acuerdo con la escala de medición deben ser considerados cuando estos valores sean usados posteriormente como datos de entrada de modelos numéricos; de otra manera, las respuestas pueden ser malinterpretadas.
Tercero, análisis estocásticos tridimensionales de cambio de escala de la conductividad hidráulica fueron realizados usando los métodos de promedios simples y de Laplace con piel para una variedad de tamaños de bloques usando mediciones reales de K. En esta parte son demostrados los errores que pueden ser introducidos al usar métodos determinísticos de cambio de escala usando promedios simples de las mediciones de K sin llevar en consideración la correlación espacial. La aplicación muestra que la heterogeneidad de K puede ser incorporada en la práctica diaria del modelador geotécnico. Los aspectos que considerar durante un proceso de cambio de escala también son discutidos. Finalmente, la dependencia del exponente de la norma-p como función del tamaño del bloque fue analizada.
En la última parte, una aplicación de cambio de escala estocástico del coeficiente de dispersión hidrodinámica D y del factor de retardo R fue realizada usando datos reales con el objetivo de reducir la falta de casos de investigación experimental de cambio de escala de parámetros de transporte de solutos reactivos. El cambio de escala de D fue realizado usando el método de macrodispersión. El método de promedio simple de norma-p fue usado para realizar el cambio de escala de R. Una buena propagación de incertidumbres fue alcanzada. Métodos simples de cambio de escala pueden ser introducidos en la práctica del modelaje usando programas comerciales de transporte y conseguir reproducir el transporte en escala gruesa, pero puede requerir correcciones con el objetivo de reducir el efecto de suavizado de la heterogeneidad causado por elNumerical models are becoming fundamental tools to predict a range of complex problems faced by geotechnical and geo-environmental engineers. However, to render the model reliable for future predictions, the model input parameters must be determined with consideration of the scale effects. In this context, this thesis focuses on upscaling of water flow and mass transport in a tropical soil by means of numerical, laboratory and field studies. This thesis is organized in four parts.
First, the heterogeneity, correlation and cross-correlation between solute transport parameters (dispersivity, ¿, and partition coefficient, Kd) and soil properties were studied in detail. In this part, it was verified that the hydraulic conductivity (K) and solute transport parameters are highly heterogeneous, while soil properties not. Spatial correlation of ¿, K, and statistically significant variables were studied, and it would probably improve the estimation only in a small-scale study, since the spatial correlation were only observed up to 2.5 m. This study was a first attempt to evaluate the spatial variation in the correlation coefficient of transport parameters of a reactive and a nonreactive solute, indicating the more relevant variables and the one that should be included in future studies.
In the second part, scale effect on K, dispersivity and partition coefficient of potassium and chloride is studied experimentally by means of laboratory and field experiments. The purpose of was to contribute to the discussion about scale effects on K, ¿ and Kd and understanding how these parameters behave with the change in the scale of measurement. Results shows that K increases with scale, regardless of the method of measurement. Dispersivity trends to increases exponentially with the sample height. Partition coefficient, tend to increase with sample length, diameter and volume. These differences in the parameters according to the scale of measurement must be considered when these observations are later used as input to numerical models, otherwise the responses can be misrepresented.
Third, stochastic analysis of three-dimensional hydraulic conductivity upscaling was performed using a simple average and the Laplacian-with-skin methods for a variety of block sizes using real K measurements. In this part it was demonstrated the errors that can be introduced by using a deterministic upscaling using simple averages of the measured K without accounting for the spatial correlation. The application shows that K heterogeneity can be incorporated in the daily practice of the geotechnical modeler. The aspects to consider when performing the upscaling were also discussed. Finally, the dependence of the exponent of the p-norm as a function of the block size was analyzed.
In the last part, an application of stochastic upscaling of hydrodynamic dispersion coefficient (D) and retardation factor (R) was performed using real data aiming to reduce the lack in experimental upscaling of reactive solute transport research. Upscaling of D was done using macrodispersion method. Simple average method based on p-norm was used to perform R upscaling. A good propagation of the uncertainties was achieved. Simple upscaling methods can be incorporated to the modeling practice using commercial transport codes and properly reproduce de transport at coarse scale but may require corrections to reduce smoothing of the heterogeneity caused by the upscaling procedure.Els models numèrics s'estan constituint en eines fonamentals per a realitzar prediccions d'una àmplia gamma de problemes enfrontats per enginyers geotècnics i geoambientales. No obstant açò, perquè aquests models puguen realitzar prediccions fiables, els paràmetres d'entrada del model han de considerar l'efecte escala. En aquest context, aquesta tesi es concentra en les regles del canvi d'escala dels paràmetres de flux i transport de massa en un sòl tropical a través d'estudis numèrics, de laboratori i de camp. Aquesta tesi està organitzada en quatre parts.
Primer, l'heterogeneïtat, correlació i correlació creuada entre els paràmetres de transport de soluts (dispersivitat, ¿, i coeficient de partició, Kd) i les propietats del sòl van ser estudiades detalladament. En aquesta part va ser verificat que la conductivitat hidràulica (K) i els paràmetres de transport de soluts són altament heterogenis, mentre que les propietats del sòl no ho són. La correlació espacial de ¿ i K amb variables estadísticament significatives va ser estudiada. Aquest resultat probablement podrà millorar l'estimació en casos d'estudis de xicoteta escala a causa que solament va ser observada correlacions de fins a 2,5 m. Aquest estudi va ser un primer intent d'avaluar la variació espacial en el coeficient de correlació dels paràmetres de transport d'un solut reactiu i d'un no reactiu, indicant les variables més rellevants i aquelles que haurien de ser inclosas en estudis futurs.
En la segona part, l'efecte escala en K, dispersivitat i coeficient de partició de potassi i clorito va ser estudiat experimentalment a través d'experiments de laboratori i de camp. L'objectiu d'aquesta part va ser contribuir a la discussió sobre l'efecte escala en K, ¿ i Kd, i entendre com aquests paràmetres es comporten amb el canvi d'escala de mesurament. La dispersivitat tendeix a augmentar amb l'altura de la mostra, és a dir, amb la longitud del transport, de manera exponencial. El coeficient de partició tendeix a augmentar amb l'altura, el diàmetre i el volum de la mostra. Aquestes diferències en els paràmetres d'acord amb l'escala de mesurament han de ser considerats quan aquests valors siguen usats posteriorment com a dades d'entrada de models numèrics; d'una altra manera, les respostes poden ser malament interpretades.
Tercer, anàlisis estocàstiques tridimensionals de canvi d'escala de la conductivitat hidràulica van ser realitzats usant els mètodes de mitjanes simples i de Laplace amb pell per a una varietat de grandàries de blocs usant mesuraments reals de K. En aquesta part són demostrats els errors que poden ser introduïts en usar mètodes determinístics de canvi d'escala usant mitjanes simples dels mesuraments de K sense tindre en consideració la correlació espacial. L'aplicació mostra que l'heterogeneïtat de K pot ser incorporada en la pràctica diària del modelador geotècnic. Els aspectes a considerar durant un procés de canvi d'escala també són discutits.
Finalment, la dependència de l'exponent de la norma-p com a funció de la grandària del bloc va ser analitzada.
En l'última part, una aplicació de canvi d'escala estocàstic del coeficient de dispersió hidrodinámica D i del factor de retard R va ser realitzada usant dades reals amb l'objectiu de reduir la falta de casos de recerca experimental de canvi d'escala de paràmetres de transport de soluts reactius. El canvi d'escala de D va ser realitzat usant el mètode de macrodispersió. El mètode de mitjana simple de norma-p va ser usat per a realitzar el canvi d'escala de R. Una bona propagació d'incerteses va ser aconseguida. Mètodes simples de canvi d'escala poden ser introduïts en la pràctica de la modelació usant programes comercials de transport i aconseguir reproduir el transport en escala gruixuda, però pot requerir correccions amb l'objectiu de reduir l'efecte de suavitzat de l'heterogeneïtat causat pel procés de canvi d'escala.Almeida De Godoy, V. (2018). Upscaling of water flow and mass transport in a tropical soil: numerical, laboratory and field studies [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/102405TESI
Spatial variability of hydraulic conductivity and solute transport parameters and their spatial correlations to soil properties
[EN] Spatial variation of the correlation among variables related to water flow and solute transport are important in the characterization of the spatial variability when performing uncertainty analysis and making uncertainty qualified solute transport predictions. However, the spatial variation of the correlation between solute transport parameters and soil properties are rarely studied. In this study, the spatial correlation among laboratory-measured transport parameters dispersivity and coefficient of distribution of a reactive and a nonreactive solute and soil properties were studied at the scale of a few meters using a dense sampling design. In an area of 84 m(2) and a depth of 2 m, 55 undisturbed soil samples were taken to determine the soil properties. Column experiments were performed, and the transport parameters were obtained by fitting the experimental data to the analytical solution of the advection-dispersion equation using the computer program CFITM. Stepwise multiple linear regression (MLR) was performed in order to identify the statistically significant variables. The spatial correlation of the variables and between variables were determined using the Stanford Geostatistical Modeling Software. Soil properties presented a moderate coefficient of variation, while hydraulic conductivity and transport parameters were widely dispersed. The difference between its minimum and maximum value was quite large for most of the studied variables evidencing their high variability. Both dispersivity and retardation factor were higher than the expected and this result can be related to the preferential pathways and to the non-connected micropores. None of the physical soil property was strongly correlated to the transport parameters. Coefficient of distribution was strongly correlated to the cation exchange capacity and significantly correlated to mesoporosity and microporosity. Hydraulic conductivity presented significant positive correlation to the effective porosity and macroporosity. Stepwise multiple linear regression analysis indicated that further studies should be performed aiming to include other variables relevant for lateritic soils such as pH, electrical conductivity, the content of Al and Fe, CaCO3 and soil structure and microstructure. The study of the spatial correlation among transport parameters and soil properties showed that the codispersion among the variables is not constant in space and can be important in dictate the behavior of the combined variables. Our results also showed that some variables that were identified as explanatory in the MLR were not significant in the spatial analysis of the correlation, showing the importance of this kind of analyses for a better decision about the most relevant variables and their relations. The present study was a first attempt to evaluate the spatial variation in the correlation coefficient of transport parameters of a reactive and a nonreactive solute, indicating the more relevant variables and the ones that should be included in future studies.The authors thank the financial support by the Brazilian National Council for Scientific and Technological Development (CNPq) (Project 401441/2014-8). The doctoral fellowship awarded to the first author by the Coordination of Improvement of Higher Level Personnel (CAPES) is gratefully acknowledged. The first author also thanks to the international mobility grant awarded by CNPq, through the Science Without Borders program (grant number: 200597/2015-9), and the international mobility grant awarded by Santander Mobility in cooperation with the University of Sao Paulo.Almeida De-Godoy, V.; Zuquette, LV.; Gómez-Hernández, JJ. (2019). Spatial variability of hydraulic conductivity and solute transport parameters and their spatial correlations to soil properties. Geoderma. 339:59-69. https://doi.org/10.1016/j.geoderma.2018.12.015S596933
Pervasive gaps in Amazonian ecological research
Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4
While the increasing availability of global databases on ecological communities has advanced our knowledge
of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In
the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of
Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus
crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced
environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian
Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by
2050. This means that unless we take immediate action, we will not be able to establish their current status,
much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio
Genome of Herbaspirillum seropedicae Strain SmR1, a Specialized Diazotrophic Endophyte of Tropical Grasses
The molecular mechanisms of plant recognition, colonization, and nutrient exchange between diazotrophic endophytes and plants are scarcely known. Herbaspirillum seropedicae is an endophytic bacterium capable of colonizing intercellular spaces of grasses such as rice and sugar cane. The genome of H. seropedicae strain SmR1 was sequenced and annotated by The Paraná State Genome Programme—GENOPAR. The genome is composed of a circular chromosome of 5,513,887 bp and contains a total of 4,804 genes. The genome sequence revealed that H. seropedicae is a highly versatile microorganism with capacity to metabolize a wide range of carbon and nitrogen sources and with possession of four distinct terminal oxidases. The genome contains a multitude of protein secretion systems, including type I, type II, type III, type V, and type VI secretion systems, and type IV pili, suggesting a high potential to interact with host plants. H. seropedicae is able to synthesize indole acetic acid as reflected by the four IAA biosynthetic pathways present. A gene coding for ACC deaminase, which may be involved in modulating the associated plant ethylene-signaling pathway, is also present. Genes for hemagglutinins/hemolysins/adhesins were found and may play a role in plant cell surface adhesion. These features may endow H. seropedicae with the ability to establish an endophytic life-style in a large number of plant species
Pervasive gaps in Amazonian ecological research
Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost
Pervasive gaps in Amazonian ecological research
Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost
Study of sodium, phosphate and ammonium transport mechanisms in undisturbed columns of unconsolidated residual material of sandstones of the Adamantina Formation
Esta dissertação apresentou um estudo dos mecanismos de transporte de sódio, fosfato e amônio em colunas indeformadas de material inconsolidado residual de arenitos da Formação Adamantina. Em campo foi realizada caracterização táctil visual do material, alem de ensaios de condutividade hidráulica. Em laboratório, realizou-se ensaio de coluna em material indeformado, para que fossem obtidos os parâmetros de fluxo de água: velocidade linear media, velocidade de Darcy, vazão e condutividade hidráulica. Também foram obtidos os coeficientes de dispersão hidrodinâmica dos três íons estudados por meio de quatro métodos. Os fatores de retardamento dos íons foram obtidos por meio de três métodos. Para auxiliar nas analises, o solo foi caracterizado mineralógica, química, física e físico-quimicamente. Adicionalmente foram feitas analises da poro simetria e estudo das trajetórias de transporte. As informações foram integradas para que fosse possível analisar os parâmetros de transporte de solutos no solo. Com esta pesquisa percebeu-se que o uso dos parâmetros de transporte em modelagem do transporte de contaminantes deve ser feito com cautela, observando tanto as características do solo (mineralógicas, físicas, físico-químicas) quanto os modelos conceituais e as limitações dos métodos utilizados.This research aimed to study the transport mechanisms of sodium, phosphate and ammonium in undisturbed columns of unconsolidated residual material of the sandstones from the Adamantina Formation. At field, visual and tactile characterization of the material were performed as well as hydraulic conductivity tests . At laboratory, there were made column tests in undisturbed samples to obtain the parameters of water flow, i.e., average linear velocity, Darcy velocity, flow rate and hydraulic conductivity. Hydrodynamic dispersion coefficients of every studied ion were determined using four methods. The retardation factors of the three ions were obtained using three methods. To assist the analysis, the soil was mineralogical, chemistry, physically and physic-chemically characterized. We also analyzed the water retention curve, mercury intrusion porosimetry and solute transport trajectories. All available data were integrated for analyzing the parameters of solute transport in soil. The results showed that the use of transport parameters in modeling of contaminant transport should be done with caution, observing soil characteristics, the conceptual models and the limitations of the methods used
Mudança de escala do fluxo de água e do transporte de massa em um solo tropical: estudos numéricos, laboratoriais e de campo
Numerical models are becoming fundamental tools to predict a range of complex problems faced by geotechnical and geo-environmental engineers. However, to render the model reliable for future predictions, the model input parameters must be determined with consideration of the scale effects. If there is a difference of scales between the observation and the model scales there are two possible ways to consider it: or models are constructed with elements of a size similar to that at which the data were measured, or some upscaling rules must be defined. In this context, this thesis focuses on upscaling of water flow and mass transport in a tropical soil by means of numerical, laboratory and field studies. This thesis is organized in four parts. First, the heterogeneity, correlation and cross-correlation between solute transport parameters (dispersivity, α, and partition coefficient, Kd) and soil properties are studied in detail. In this part, it is verified that the hydraulic conductivity (K) and solute transport parameters are highly heterogeneous, while soil properties are not. Spatial correlation of α, K, and statistically significant variables are studied, and it would probably improve the estimation only in a small-scale study, since the spatial correlation are only observed up to 2.5 m. This study is a first attempt to evaluate the spatial variation in the correlation coefficient of transport parameters of a reactive and a nonreactive solute, indicating the more relevant variables and the one that should be included in future studies. In the second part, scale effect on K, dispersivity and partition coefficient of potassium and chloride are studied experimentally by means of laboratory and field experiments. The purpose is to contribute to the discussion about scale effects on K, α and Kd and understanding how these parameters behave with the change in the scale of measurement. Results show that K values increases with scale, regardless of the method of measurement, except for the results obtained from double-ring infiltrometer tests. Dispersivity trends to increase exponentially with the sample height. Partition coefficient tends to increase with sample length, diameter and volume. These differences in the parameters according to the scale of measurement must be considered when these observations are later used as input to numerical models, otherwise the responses can be misrepresented. Third, stochastic analysis of three-dimensional hydraulic conductivity upscaling is performed using a simple average and the Laplacian-with-skin methods for a variety of block sizes based on real K measurements. In this part it is demonstrated the errors that can be introduced by using a deterministic upscaling using simple averages of the measured K without accounting for the spatial correlation. Results show that K heterogeneity can be incorporated in the daily practice of the geotechnical modeler. The aspects to consider when performing the upscaling are also discussed. Finally, the dependence of the exponent of the p-norm as a function of the block size is analyzed. In the last part, stochastic upscaling of hydrodynamic dispersion coefficient (D) and retardation factor (R) is performed using real data aiming to reduce the lack in experimental upscaling of reactive solute transport research. The enhanced macrodispersion coefficient approach is used to upscale the local scale hydrodynamic dispersion (D) and, as a novelty, the impact of heterogeneity of local dispersivity is also taken into account. To upscale retardation factor (R), a p-norm is used to compute an equivalent R. Uncertainty analyses are also performed and a good propagation of the uncertainties is achieved after upscaling. Simple upscaling methods can be incorporated to the modeling practice using commercial transport codes and properly reproduce de transport at coarse scale but may require corrections to reduce smoothing of the heterogeneity caused by the upscaling procedure.Modelos numéricos estão se tornando ferramentas fundamentais para prever uma série de problemas complexos enfrentados por engenheiros geotécnicos e geoambientais. No entanto, para que o modelo seja confiável para previsões futuras, seus parâmetros de entrada devem ser determinados com a consideração do efeito da escala. Se há uma diferença de escalas entre a escala da observação e a escala do modelo, existem duas maneiras possíveis de considerá-la: ou constrói-se modelos com elementos de tamanhos semelhantes àqueles em que os dados foram medidos, ou definem-se algumas regras de mudança de escala. Neste contexto, esta tese enfoca a mudança de escala do fluxo de água e do transporte de massa em um solo tropical, por meio de estudos numéricos, laboratoriais e de campo. Esta tese é organizada em quatro partes. Em primeiro lugar, estudou-se em detalhe a heterogeneidade, a correlação e a correlação cruzada entre os parâmetros de transporte de soluto (dispersividade, α, e coeficiente de partição, Kd) e as propriedades do solo. Nesta parte, verificou-se que a condutividade hidráulica (K) e os parâmetros de transporte de soluto são altamente heterogêneos, enquanto as propriedades do solo não o são. A correlação espacial de α, K e das variáveis estatisticamente significativas foi estudada, e, provavelmente, melhoraria a estimativa apenas em um estudo em pequena escala, uma vez que a correlação espacial só foi observada até 2,5 m. Este estudo foi uma primeira tentativa de avaliar a variação espacial no coeficiente de correlação dos parâmetros de transporte de um soluto reativo e não-reativo, indicando as variáveis mais relevantes e as que devem ser incluídas em estudos futuros. Na segunda parte, o efeito de escala em K, na dispersividade e no coeficiente de partição de potássio e cloreto é estudado experimentalmente por meio de ensaios laboratoriais e de campo. O objetivo foi contribuir com a discussão sobre os efeitos de escala em K, α e Kd e entender como esses parâmetros se comportam com a mudança na escala da medição. Os resultados mostram que K aumenta com a escala, independentemente do método de medição. A dispersão tende a aumentar de maneira exponencial com a altura da amostra. O coeficiente de partição tende a aumentar tanto com o comprimento, quanto com o diâmetro e o volume da amostra. Essas diferenças nos parâmetros de acordo com a escala de medida devem ser consideradas quando essas observações são posteriormente usadas como entrada para modelos numéricos, caso contrário, as respostas podem ser mal representadas. Em terceiro lugar, uma análise estocástica tridimensional da mudança de escala da condutividade hidráulica foi realizada usando tanto média simples quanto o método Laplaciano-com-pele para vários tamanhos de blocos usando medidas K reais. Nesta parte, foram demonstrados os erros que podem ser introduzidos ao se usar métodos determinísticos de mudança de escala, usando médias simples das medições de K sem se considerar a correlação espacial. A aplicação das técnicas de mudança de escala mostra que a heterogeneidade de K pode ser incorporada na prática diária do modelador geotécnico. Os aspectos a serem considerados ao realizar a mudança de escala também foram discutidos. Finalmente, analisou-se a dependência do expoente da norma p em função do tamanho do bloco. Na última parte, uma aplicação de mudança de escala estocástica do coeficiente de dispersão hidrodinâmica (D) e do fator de retardo (R) foi realizada usando dados reais visando reduzir a falta pesquisas no tema de mudança de escala do transporte de soluto reativo. A mudança de escala do D foi feito usando o método de macrodispersão. O método da média simples baseado na norma p foi usado para executar a mudança de escala de R. A incerteza foi propagada satisfatoriamente. Métodos simples de mudança de escala podem ser incorporados à prática de modelagem usando programas comerciais, e reproduzir corretamente o transporte em escala grossa, mas podem exigir correções para reduzir o efeito suavizado da heterogeneidade causada pelo procedimento de mudança de escala
Mudança de escala do fluxo de água e do transporte de massa em um solo tropical: estudos numéricos, laboratoriais e de campo
Numerical models are becoming fundamental tools to predict a range of complex problems faced by geotechnical and geo-environmental engineers. However, to render the model reliable for future predictions, the model input parameters must be determined with consideration of the scale effects. If there is a difference of scales between the observation and the model scales there are two possible ways to consider it: or models are constructed with elements of a size similar to that at which the data were measured, or some upscaling rules must be defined. In this context, this thesis focuses on upscaling of water flow and mass transport in a tropical soil by means of numerical, laboratory and field studies. This thesis is organized in four parts. First, the heterogeneity, correlation and cross-correlation between solute transport parameters (dispersivity, α, and partition coefficient, Kd) and soil properties are studied in detail. In this part, it is verified that the hydraulic conductivity (K) and solute transport parameters are highly heterogeneous, while soil properties are not. Spatial correlation of α, K, and statistically significant variables are studied, and it would probably improve the estimation only in a small-scale study, since the spatial correlation are only observed up to 2.5 m. This study is a first attempt to evaluate the spatial variation in the correlation coefficient of transport parameters of a reactive and a nonreactive solute, indicating the more relevant variables and the one that should be included in future studies. In the second part, scale effect on K, dispersivity and partition coefficient of potassium and chloride are studied experimentally by means of laboratory and field experiments. The purpose is to contribute to the discussion about scale effects on K, α and Kd and understanding how these parameters behave with the change in the scale of measurement. Results show that K values increases with scale, regardless of the method of measurement, except for the results obtained from double-ring infiltrometer tests. Dispersivity trends to increase exponentially with the sample height. Partition coefficient tends to increase with sample length, diameter and volume. These differences in the parameters according to the scale of measurement must be considered when these observations are later used as input to numerical models, otherwise the responses can be misrepresented. Third, stochastic analysis of three-dimensional hydraulic conductivity upscaling is performed using a simple average and the Laplacian-with-skin methods for a variety of block sizes based on real K measurements. In this part it is demonstrated the errors that can be introduced by using a deterministic upscaling using simple averages of the measured K without accounting for the spatial correlation. Results show that K heterogeneity can be incorporated in the daily practice of the geotechnical modeler. The aspects to consider when performing the upscaling are also discussed. Finally, the dependence of the exponent of the p-norm as a function of the block size is analyzed. In the last part, stochastic upscaling of hydrodynamic dispersion coefficient (D) and retardation factor (R) is performed using real data aiming to reduce the lack in experimental upscaling of reactive solute transport research. The enhanced macrodispersion coefficient approach is used to upscale the local scale hydrodynamic dispersion (D) and, as a novelty, the impact of heterogeneity of local dispersivity is also taken into account. To upscale retardation factor (R), a p-norm is used to compute an equivalent R. Uncertainty analyses are also performed and a good propagation of the uncertainties is achieved after upscaling. Simple upscaling methods can be incorporated to the modeling practice using commercial transport codes and properly reproduce de transport at coarse scale but may require corrections to reduce smoothing of the heterogeneity caused by the upscaling procedure.Modelos numéricos estão se tornando ferramentas fundamentais para prever uma série de problemas complexos enfrentados por engenheiros geotécnicos e geoambientais. No entanto, para que o modelo seja confiável para previsões futuras, seus parâmetros de entrada devem ser determinados com a consideração do efeito da escala. Se há uma diferença de escalas entre a escala da observação e a escala do modelo, existem duas maneiras possíveis de considerá-la: ou constrói-se modelos com elementos de tamanhos semelhantes àqueles em que os dados foram medidos, ou definem-se algumas regras de mudança de escala. Neste contexto, esta tese enfoca a mudança de escala do fluxo de água e do transporte de massa em um solo tropical, por meio de estudos numéricos, laboratoriais e de campo. Esta tese é organizada em quatro partes. Em primeiro lugar, estudou-se em detalhe a heterogeneidade, a correlação e a correlação cruzada entre os parâmetros de transporte de soluto (dispersividade, α, e coeficiente de partição, Kd) e as propriedades do solo. Nesta parte, verificou-se que a condutividade hidráulica (K) e os parâmetros de transporte de soluto são altamente heterogêneos, enquanto as propriedades do solo não o são. A correlação espacial de α, K e das variáveis estatisticamente significativas foi estudada, e, provavelmente, melhoraria a estimativa apenas em um estudo em pequena escala, uma vez que a correlação espacial só foi observada até 2,5 m. Este estudo foi uma primeira tentativa de avaliar a variação espacial no coeficiente de correlação dos parâmetros de transporte de um soluto reativo e não-reativo, indicando as variáveis mais relevantes e as que devem ser incluídas em estudos futuros. Na segunda parte, o efeito de escala em K, na dispersividade e no coeficiente de partição de potássio e cloreto é estudado experimentalmente por meio de ensaios laboratoriais e de campo. O objetivo foi contribuir com a discussão sobre os efeitos de escala em K, α e Kd e entender como esses parâmetros se comportam com a mudança na escala da medição. Os resultados mostram que K aumenta com a escala, independentemente do método de medição. A dispersão tende a aumentar de maneira exponencial com a altura da amostra. O coeficiente de partição tende a aumentar tanto com o comprimento, quanto com o diâmetro e o volume da amostra. Essas diferenças nos parâmetros de acordo com a escala de medida devem ser consideradas quando essas observações são posteriormente usadas como entrada para modelos numéricos, caso contrário, as respostas podem ser mal representadas. Em terceiro lugar, uma análise estocástica tridimensional da mudança de escala da condutividade hidráulica foi realizada usando tanto média simples quanto o método Laplaciano-com-pele para vários tamanhos de blocos usando medidas K reais. Nesta parte, foram demonstrados os erros que podem ser introduzidos ao se usar métodos determinísticos de mudança de escala, usando médias simples das medições de K sem se considerar a correlação espacial. A aplicação das técnicas de mudança de escala mostra que a heterogeneidade de K pode ser incorporada na prática diária do modelador geotécnico. Os aspectos a serem considerados ao realizar a mudança de escala também foram discutidos. Finalmente, analisou-se a dependência do expoente da norma p em função do tamanho do bloco. Na última parte, uma aplicação de mudança de escala estocástica do coeficiente de dispersão hidrodinâmica (D) e do fator de retardo (R) foi realizada usando dados reais visando reduzir a falta pesquisas no tema de mudança de escala do transporte de soluto reativo. A mudança de escala do D foi feito usando o método de macrodispersão. O método da média simples baseado na norma p foi usado para executar a mudança de escala de R. A incerteza foi propagada satisfatoriamente. Métodos simples de mudança de escala podem ser incorporados à prática de modelagem usando programas comerciais, e reproduzir corretamente o transporte em escala grossa, mas podem exigir correções para reduzir o efeito suavizado da heterogeneidade causada pelo procedimento de mudança de escala