94 research outputs found

    Google Play apps ERM: (energy rating model) multi-criteria evaluation model to generate tentative energy ratings for Google Play store apps

    Get PDF
    A common issue that is shared among Android smartphones users was and still related to saving their batteries power and to avoid the need of using any recharging resources. The tremendous increase in smartphone usage is clearly accompanied by an increase in the need for more energy. This preoperational relationship between modern technology and energy generates energy-greedy apps, and therefore power-hungry end users. With many apps falling under the same category in an app store, these apps usually share similar functionality. Because developers follow different design and development schools, each app has its own energy-consumption habits. Since apps share similar features, an end-user with limited access to recharging resources would prefer an energy-friendly app rather than a popular energy-greedy app. However, app stores give no indication about the energy behaviour of the apps they offer, which causes users to randomly choose apps without understanding their energy-consumption behaviour. Furthermore, with regard to the research questions about the fact that power saving application consumes a lot of electricity, past studies clearly indicate that there is a lot of battery depletion due to several factors. This problem has become a major concern for smartphone users and manufacturers. The main contribution of our research is to design a tool that can act as an effective decision support factor for end users to have an initial indication of the energy-consumption behaviour of an application before installing it. The core idea of the “before-installation” philosophy is simplified by the contradicting concept of installing the app and then having it monitored and optimized. Since processing requires power, avoiding the consumption of some power in order to conserve a larger amount of power should be our priority. So instead, we propose a preventive strategy that requires no processing on any layer of the smartphone. To address this issue, we propose a star-rating evaluation model (SREM), an approach that generates a tentative energy rating label for each app. To that end, SREM adapts current energy-aware refactoring tools to demonstrate the level of energy consumption of an app and presents it in a star-rating schema similar to the Ecolabels used on electrical home appliances. The SREM will also inspire developers and app providers to come up with multiple energy-greedy versions of the same app in order to suit the needs of different categories of users and rate their own apps. We proposed adding SREM to Google Play store in order to generate the energy-efficiency label for each app which will act as a guide for both end users and developers without running any processes on the end-users smartphone. Our research also reviews relevant existing literature specifically those covering various energy-saving techniques and tools proposed by various authors for Android smartphones. A secondary analysis has been done by evaluating the past research papers and surveys that has been done to assess the perception of the users regarding the phone power from their battery. In addition, the research highlights an issue that the notifications regarding the power saving shown on the screen seems to exploit a lot of battery. Therefore, this study has been done to reflect the ways that could help the users to save the phone battery without using any power from the same battery in an efficient manner. The research offers an insight into new ways that could be used to more effectively conserve smartphone energy, proposing a framework that involves end users on the process.Um problema comum entre utilizadores de smartphones Android tem sido a necessidade de economizar a energia das baterias, de modo a evitar a utilização de recursos de recarga. O aumento significativo no uso de smartphones tem sido acompanhado por um aumento, também significativo, na necessidade de mais energia. Esta relação operacional entre tecnologia moderna e energia gera aplicações muito exigentes no seu consumo de energia e, portanto, perfis de utilizadores que requerem níveis de energia crescentes. Com muitos das aplicações que se enquadram numa mesma categoria da loja de aplicações (Google Store), essas aplicações geralmente também partilham funcionalidades semelhantes. Como os criadores destas aplicações seguem abordagens diferentes de diversas escolas de design e desenvolvimento, cada aplicação possui as suas próprias caraterísticas de consumo de energia. Como as aplicações partilham recursos semelhantes, um utilizador final com acesso limitado a recursos de recarga prefere uma aplicação que consome menos energia do que uma aplicação mais exigente em termos de consumo energético, ainda que seja popular. No entanto, as lojas de aplicações não fornecem uma indicação sobre o comportamento energético das aplicações oferecidas, o que faz com que os utilizadores escolham aleatoriamente as suas aplicações sem entenderem o correspondente comportamento de consumo de energia. Adicionalmente, no que diz respeito à questão de investigação, a solução de uma aplicação de economia de energia consume muita eletricidade, o que a torna limitada; estudos anteriores indicam claramente que há muita perda de bateria devido a vários fatores, não constituindo solução para muitos utilizadores e para os fabricantes de smartphones. A principal contribuição de nossa pesquisa é projetar uma ferramenta que possa atuar como um fator de suporte à decisão eficaz para que os utilizadores finais tenham uma indicação inicial do comportamento de consumo de energia de uma aplicação, antes de a instalar. A ideia central da filosofia proposta é a de atuar "antes da instalação", evitando assim a situação em se instala uma aplicação para perceber à posteriori o seu impacto no consumo energético e depois ter que o monitorizar e otimizar (talvez ainda recorrendo a uma aplicação de monitorização do consumo da bateria, o que agrava ainda mais o consumo energético). Assim, como o processamento requer energia, é nossa prioridade evitar o consumo de alguma energia para conservar uma quantidade maior de energia. Portanto, é proposta uma estratégia preventiva que não requer processamento em nenhuma camada do smartphone. Para resolver este problema, é proposto um modelo de avaliação por classificação baseado em níveis e identificado por estrelas (SREM). Esta abordagem gera uma etiqueta de classificação energética provisória para cada aplicação. Para isso, o SREM adapta as atuais ferramentas de refatoração com reconhecimento de energia para demonstrar o nível de consumo de energia de uma aplicação, apresentando o resultado num esquema de classificação por estrelas semelhante ao dos rótulos ecológicos usados em eletrodomésticos. O SREM também se propõe influenciar quem desenvolve e produz as aplicações, a criarem diferentes versões destas, com diferentes perfis de consumo energético, de modo a atender às necessidades de diferentes categorias de utilizadores e assim classificar as suas próprias aplicações. Para avaliar a eficiência do modelo como um complemento às aplicações da loja Google Play, que atuam como uma rotulagem para orientação dos utilizadores finais. A investigação também analisa a literatura existente relevante, especificamente a que abrange as várias técnicas e ferramentas de economia de energia, propostas para smartphones Android. Uma análise secundária foi ainda realizada, focando nos trabalhos de pesquisa que avaliam a perceção dos utilizadores em relação à energia do dispositivo, a partir da bateria. Em complemento, a pesquisa destaca um problema de que as notificações sobre a economia de energia mostradas na tela parecem explorar muita bateria. Este estudo permitiu refletir sobre as formas que podem auxiliar os utilizadores a economizar a bateria do telefone sem usar energia da mesma bateria e, mesmo assim, o poderem fazer de maneira eficiente. A pesquisa oferece uma visão global das alternativas que podem ser usadas para conservar com mais eficiência a energia do smartphone, propondo um modelo que envolve os utilizadores finais no processo.Un problème fréquent rencontré par les utilisateurs de smartphones Android a été, tout en l’étant toujours, d’économiser leur batterie et d’éviter la nécessité d’utiliser des ressources de recharge. La croissance considérable de l’utilisation des smartphones s’accompagne clairement d’une augmentation des besoins en énergie. Cette relation préopérationnelle entre la technologie moderne et l’énergie génère des applications gourmandes en énergie, et donc des utilisateurs finaux qui le sont tout autant. De nombreuses applications relevant de la même catégorie dans une boutique partagent généralement des fonctionnalités similaires. Étant donné que les développeurs adoptent différentes approches de conception et de développement, chaque application a ses propres caractéristiques de consommation d’énergie. Comme les applications partagent des fonctionnalités similaires, un utilisateur final disposant d’un accès limité aux ressources de recharge préférerait une application écoénergétique plutôt qu’une autre gourmande en énergie. Cependant, les boutiques d’applications ne donnent aucune indication sur le comportement énergétique des applications qu’elles proposent, ce qui incite les utilisateurs à choisir des applications au hasard sans comprendre leurs caractéristiques en ce domaine. En outre, en ce qui concerne les questions de recherche sur le fait que les applications d’économie d’énergie consomment beaucoup d’électricité, des études antérieures indiquent clairement que la décharge d’une batterie est due à plusieurs facteurs. Ce problème est devenu une préoccupation majeure pour les utilisateurs et les fabricants de smartphones. La principale contribution de notre étude est de concevoir un outil qui peut agir comme un facteur d’aide efficace à la décision pour que les utilisateurs finaux aient une indication initiale du comportement de consommation d’énergie d’une application avant de l’installer. L’idée de base de la philosophie « avant l’installation » est simplifiée par le concept contradictoire d’installer l’application pour ensuite la contrôler et l’optimiser. Puisque les opérations de traitement exigent de l’énergie, éviter la consommation d’une partie d’entre elles pour l’économiser devrait être notre priorité. Nous proposons donc une stratégie préventive qui ne nécessite aucun traitement sur une couche quelconque du smartphone. Pour résoudre ce problème, nous proposons un modèle d’évaluation au moyen d’étoiles (star-rating evaluation model ou SREM), une approche qui génère une note énergétique indicative pour chaque application. À cette fin, le SREM adapte les outils actuels de refactoring sensibles à l’énergie pour démontrer le niveau de consommation d’énergie d’une application et la présente dans un schéma de classement par étoiles similaire aux labels écologiques utilisés sur les appareils électroménagers. Le SREM incitera également les développeurs et les fournisseurs d’applications à mettre au point plusieurs versions avides d’énergie d’une même application afin de répondre aux besoins des différentes catégories d’utilisateurs et d’évaluer leurs propres applications. Nous avons proposé d’ajouter le SREM au Google Play Store afin de générer le label d’efficacité énergétique pour chaque application. Celui-ci servira de guide à la fois pour les utilisateurs finaux et les développeurs sans exécuter de processus sur le smartphone des utilisateurs finaux. Notre recherche passe également en revue la littérature existante pertinente, en particulier celle qui couvre divers outils et techniques d’économie d’énergie proposés par divers auteurs pour les smartphones Android. Une analyse secondaire a été effectuée en évaluant les documents de recherche et les enquêtes antérieurs qui ont été réalisés pour évaluer la perception des utilisateurs concernant l’alimentation téléphonique depuis leur batterie. En outre, l’étude met en évidence un problème selon lequel les notifications concernant les économies d’énergie affichées à l’écran semblent elles-mêmes soumettre les batteries à une forte utilisation. Par conséquent, cette étude a été entreprise pour refléter les façons qui pourraient aider les utilisateurs à économiser efficacement la batterie de leur téléphone sans pour autant la décharger. L’étude offre un bon aperçu des nouvelles façons d’économiser plus efficacement l’énergie des smartphones, en proposant un cadre qui implique les utilisateurs finaux dans le processus

    Micropost sensor array for cell traction forces studies

    Get PDF
    Abstract only availableA rapid fusion of MEMS (Microelectromechanical-Systems) and biology provides many diverse spheres and methods in cell studies. Micropost can be an important role in many different biological analyses because forces from cells can be obtained by calibrating micropost sensor array. Therefore, making better microposts will be useful for getting accurate force analysis. One way to make microposts is to pour poly-dimethylsiloxane (PDMS) onto wafer that has cylindrical holes array and peeled off from it after PDMS cured at room temperature for 24 hours. Before cultivating cells on microposts, deflection force relationship of micropost is expected be acquired in order to obtain forces that exerted by cells on its top. When cells were placed to Micropost Force Sensor Array (MFSA), they stuck and grew on MFSA's top surface which causes deflection of microposts, and this deflection can be transferred to the force. The relationship between laterally exerted point force at the top of microposts and micropost deflection force was observed by AFM (Atomic Force Microscope). Calibration shows that the relationship between deflection of microposts and force applied was non-linear. From the process of using MFSA technology, the result was that human skin fibroblasts (HSFs) made bigger traction forces than human patellar tendon fibroblasts (HPTFs). Therefore, MFSA is more accurate and a better technology that can help in useful knowledge such as the molecular and cellular system of tissue injury curing. In conclusion, we have used the MFSA technique with a non-linear micropost displacement/deflection-force relationship for measurement of the cell traction forces. New image analysis methods for measurement of displacement of microposts are implemented and high density micropost array were accomplished. This technique will be a very useful technology for many biological applications used in researching the reaction of cell shape and cytokines on CTFs and measuring CTF to find bad cells.College of Engineering Undergraduate Research Optio

    Frequency-Selective Metasurface Integrated Uncooled Microbolometers

    Get PDF
    A metasurface integrated microbolometer having a sensing layer (e.g., SixGeyO1-x-y). The presence of the metasurface provides selectivity with respect to wavelength, polarization and angle-of-incidence. The presence of the metasurface into the microbolometer affects conversion of electromagnetic to thermal energy, thermal response, electrical integration of the microbolometer, and the tradeoff between resistivity and temperature coefficient of resistance, thereby allowing the ability to obtain a sensing with high temperature coefficient of resistance with lower resistivity values than that of films without the metasurface. The presence of the metasurface removes the need for a Fabry-Perot cavity

    The evolution of energy requirements of smartphones based on user behaviour and implications of the COVID-19 era

    Get PDF
    Smartphones have evolved to become frequent companions to humans. The common problem shared by Android users of smartphones was, and continues to be, about saving their batteries and preventing the need to use any recharging tools. A significant number of studies have been performed in the general field of "saving energy in smartphones". During a state of global lockdown, the use of smartphone devices has skyrocketed, and many governments have implemented location-tracking applications for their citizens as means of ensuring that the imposed governmental restrictions are being adhered to. Since smartphones are battery-powered, the opportunity to conserve electricity and ensure that the handset does not have to be charged so much or that it does not die and impede location-tracking during this period of crisis is of vital significance, impacting not only the reliability of tracking, but also the usability of the mobile itself. While there are methods to reduce the battery’s drain from mobile app use, they are not fully utilized by users. Simultaneously, the following the manuscript demonstrates the growing prevalence of mobile applications in daily lives, as well as the disproportionally increasing phone functionality, which results in the creation of a dependency towards smartphone use and the need of energy to recharge and operate theses smartphones

    An analysis of sensitive material (silicon-germanium-oxide) using in uncooled microbolometer

    Get PDF
    Abstract only availableMicrobolometer is a device used as a thermal sensor in a thermal camera or a night vision camera. The most important part of the microbolometer is the sensitive material that was prepared by radio frequency (RF) magnetron sputtering thin film of silicon-germanium-oxide. To optimize the performance of the microbolometer, we need to find the best sensitive material that has a high temperature coefficient of resistance (TCR) value, low resistivity, and low noise. In addition, if we can find a good sensitive material that can detect even a slightly change of temperature, we will have a better quality picture from the thermal camera or a night vision camera. In our research, we used the temperature coefficient of resistance (TCR) values and the resistivity to analyze the electrical characteristic of the sensitive material. To observe the electrical characteristic of the sensitive material, we set up a circuit and increase the temperature to observe the voltage of the sensitive material at each 2 degree Celsius step, and then we calculated the TCR value and the resistivity of the sensitive material. When the sensitive material was sensing a different temperature, the sensitive material would send a different detectable signal to the device that can be used for various applications. The TCR value is directly proportional to the temperature sensitivity of the sensitive material. By varying the composition (Silicon-Germanium-Oxide) of the sensitive material, the sensitive material will also have a different electrical property. In the future, we need to further our research on the noise measurement.College of Engineering Undergraduate Research Optio

    Star-rating evaluation model for rating the energy-efficiency level of android google play apps

    Get PDF
    The tremendous increase in smartphone usage is accompanied by an increase in the need for more energy. This preoperational relationship between modern technology and energy generates energy-greedy apps, and therefore power-hungry end users. With many apps falling under the same category in an app store, these apps usually share similar functionality. Because developers follow different design and development schools, each app has its energy-consumption habits. Since apps share similar features, an end-user with limited access to recharging resources would prefer an energy-friendly app rather than a popular energy-greedy app. However, app stores do not indicate the energy behavior of the apps they offer, which causes users to randomly choose apps without understanding their energy-consumption behavior. A review of the relevant literature was provided covering various energy-saving techniques. The results gave an initial impression about the popularity of the usage of two power-saving modes where the average usage of these modes did not exceed 31% among the total 443 Android users. To address this issue, we propose a star-rating evaluation model (SREM), an approach that generates a tentative energy rating label for each app. The model was tested on 7 open-source apps to act as a primary evaluation sample. To that end, SREM adapts current energy-aware refactoring tools to demonstrate the level of energy consumption of an app and presents it in a star-rating schema similar to the Ecolabels used on electrical home appliances. As per our results, SREM helped in saving 35% of smartphone energy

    Microelectromechanical systems Coulter counter for cell monitoring and counting

    Get PDF
    This note describes the design, fabrication, and testing of a novel microelectromechanical systems Coulter counter. The Coulter counter will be used to detect and monitor impedance changes of cells as a function of time in response to different experimental extracellular environments. The device consists of SU-8 (negative photoresist ) microchannels, vertical electroplated electrodes, polydimethylsiloxane cover, and is divided into a passive mixing region, a focusing region using negative dielectrophoretic forces, and a measuring region defined by multiple electroplated electrode pairs. The devices were tested using both microbeads in saline water and fibroblast cells in phosphate buffered saline solution. The results show that the proposed microsystem is capable of monitoring impedance of cells at different positions along the Coulter microchannel

    An update of additive manufacturing (3D printing) technology in dentistry.

    Get PDF
    Background: The development of procedures known as additive manufacturing, which aim to produce more complex items with a lower overall material consumption compared to processes known as subtractive manufacturing. In addition, in recent years there has been a significant rise in the quantity of dental materials that are produced via the use of these techniques. As a consequence of this, scientific research has been concentrating more and more on such technologies, particularly in order to shed light on the methodology, indicators, and boundaries of the emerging technology. Methods: The purpose of this paper is to provide a narrative assessment of the state-of-the-art in the area of these popular additive manufacturing methods, as well as the appropriate dental applications, by using scientific literature analysis and references to the authors\u27 clinical experience. In addition, the purpose of this study is to evaluate the appropriate dental applications. Results: The end result was a tremendous amount of data, most of it is conflicting, is now available for viewing. In tests conducted both in vitro and in vivo, the following additive manufacturing procedures were shown to be effective: Milling results in a number of negative side effects, including the loss of material, increased costs associated with equipment maintenance, and wasted production time. Additive manufacturing, often known as 3D printing, allows for the production of prostheses and models at a quicker rate and with less waste material. Conclusions: In order to successfully manufacture complex component geometries, CAM configuration and process design must be carefully considered. As a consequence of this, the speed at which the process is carried out is of equal importance to the interaction between the individual components. When dealing with geometry that is more complicated, 3D printing beats CAM

    Off-Axis Microsphere Photolithography Patterned Nanohole Array and Other Structures on an Optical Fiber Tip for Glucose Sensing

    Get PDF
    Microsphere photolithography (MPL) using off-axis UV exposure is a technique that uses a layer of self-assembled microspheres as an optical mask to project different periodic nanopatterns. This paper introduces MPL as an alternative fabrication technique to pattern complex metasurfaces on an optical single mode fiber tip as a sensor for measuring refractive index. Based on the hexagonal close packing microsphere array, complicated metasurfaces were successfully created by changing the UV illumination angle. Using the same self-assembled microspheres monolayer, multiple UV illumination jets were projected to create multiple hole group patterns. Fiber sensors with three-hole group and four-hole group patterns were fabricated and tested with different glucose concentrations in water. The different concentration solutions have various refractive indexes, which result in the shift of the metasurface resonant wavelength, represented as sensitivity. The testing results show that the three-hole group and four-hole group have the sensitivity of 906 nm per RIU and 675 nm per RIU, respectively. Finite element analysis was used to model the fiber sensor\u27s surrounding with different refractive index solutions. These new pattern metasurface coated fibers\u27 refractive index sensitivity has increased by 40% compared to our previous work, while the technique still provides a cost-effective, flexible, high-throughput fabrication of the fiber sensor

    Microsphere Photolithography Patterned Nanohole Array on an Optical Fiber

    Get PDF
    Microsphere Photolithography (MPL) is a nanopatterning technique that utilizes a self-assembled monolayer of microspheres as an optical element to focus incident radiation inside a layer of photoresist. The microspheres produces a sub-diffraction limited photonic-jet on the opposite side of each microsphere from the illumination. When combined with pattern transfer techniques such as etching/lift-off, MPL provides a versatile, low-cost fabrication method for producing hexagonal close-packed metasurfaces. This article investigates the MPL process for creating refractive index (RI) sensors on the cleaved tips of optical fiber. The resonant wavelength of metal elements on the surface is dependent on the local dielectric environment and allows the refractive index of an analyte to be resolved spectrally. A numerical study of hole arrays defined in metal films shows that the waveguide mode provides good sensitivity to the analyte refractive index. This can be readily tuned by adjusting the MPL exposure and the simulation results guide the fabrication of a defect tolerant refractive index sensor on the tip of a fiber tip with a sensitivity of 613 nm/RIU. The conformal nature of the microsphere monolayer simplifies the fabrication process and provides a viable alternative to direct-write techniques such as Focused Ion Beam (FIB) milling
    • …
    corecore