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ABSTRACT Microsphere Photolithography (MPL) is a nanopatterning technique that utilizes a
self-assembled monolayer of microspheres as an optical element to focus incident radiation inside a layer of
photoresist. The microspheres produces a sub-diffraction limited photonic-jet on the opposite side of each
microsphere from the illumination. When combined with pattern transfer techniques such as etching/lift-off,
MPL provides a versatile, low-cost fabrication method for producing hexagonal close-packed metasurfaces.
This article investigates the MPL process for creating refractive index (RI) sensors on the cleaved tips of
optical fiber. The resonant wavelength of metal elements on the surface is dependent on the local dielectric
environment and allows the refractive index of an analyte to be resolved spectrally. A numerical study of
hole arrays defined in metal films shows that the waveguide mode provides good sensitivity to the analyte
refractive index. This can be readily tuned by adjusting theMPL exposure and the simulation results guide the
fabrication of a defect tolerant refractive index sensor on the tip of a fiber tip with a sensitivity of 613 nm/RIU.
The conformal nature of the microsphere monolayer simplifies the fabrication process and provides a viable
alternative to direct-write techniques such as Focused Ion Beam (FIB) milling.

INDEX TERMS Fiber tip, refractive index, microsphere photolithography.

I. INTRODUCTION
Optical refractive index (RI) sensing is widely used in chem-
istry and biology for label-free detection. Metal-based plas-
monic [1]–[4] and dielectric-based optical [5]–[8] designs
produce a resonant frequency that depends on the refractive
index of an analyte. The performance of these sensors is char-
acterized by their sensitivity, S = 1λ0/1n, which describes
the shift of the resonant wavelengthwith respect to the change
in the refractive index of the analyte. The ability to resolve
the resonant wavelength is also affected by its full width at
half maximum (FWHM), and a figure of merit for RI sensors
is FOM = S/FWHM [9]. Propagating Surface Plasmon
Resonance (PSPR) sensors have sensitivities as high as 2 ×
106 nm/RIU [10] due to the large penetration depth of the
evanescent field into the dielectric medium [11], [12]. How-
ever, this comes at the expense of a relatively large interroga-
tion areas. Local Surface Plasmon Resonance (LSPR) sensors

The associate editor coordinating the review of this manuscript and
approving it for publication was Sukhdev Roy.

have lower sensitivity but a confined interrogation volume
which provides a greater spatial resolution of the analyte.
The theoretical limit for the sensitivity of LSPR sensors is
proportional to the ratio between the resonant wavelength and
index of refraction, λ0/n [12]. Sensitivities of 1000 nm/RIU
are typical [13]–[16] and can be further improved by intro-
ducing Fano resonances with dark modes [17]. This article
focuses on the physics and demonstration of the sensitivity
without using any recognition layer. Biorecognition layer will
be added in the future to improve the sensitivity. In addi-
tion, most of the techniques found in literature require dif-
ferent fabrication process such Focused Ion Beam (FIB)
and Electron Beam Lithography (EBL) which is much more
complicated and expensive. On the contrary, the MPL is a
much-simplified and cost-effective method.

Optical fiber provides an ideal platform for LSPR RI sen-
sors because the advantage of local interrogation is integrated
with illumination/collection. This facilitates greater flexibil-
ity, remote sensing, and light weight compared to free-space
coupling options. These attributes are particularly useful for
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microfluidics and in-vivo access. RI sensors have been pat-
terned either on the sidewall of optical fiber [18], fiber tip or
facet [19]–[27] or both [28], [29] for transmission/reflection
measurements. For sensors on the tip of the optical fiber,
reflection-based measurements only require one port into the
sensing media, and the interrogation area has been shown to
approach the area of the fiber core (as small as 1/2500 mm2

for single mode fiber) [21].
Focused Ion Beam (FIB) and Electron Beam Lithogra-

phy (EBL) are the most common methods to pattern RI
sensors on the facet of optical fiber [30]. For example,
Lan et al. [21] demonstrated FIB milling a square lattice of
subwavelength holes on the tip of optical fiber to achieve
a sensitivity of 573 nm/RIU and Lin et al. [23] patterned
nanodots using EBL to produce sensors with 196 nm/RIU.
The cost of patterning is a significant obstacle to the prac-
tical use of optical fiber-based LSPR sensors. While ver-
satile, the direct-write techniques do not scale well for
mass production of sensors. The required feature sizes and
alignment to multiple fibers challenge conventional lithogra-
phy. This has motivated the investigation of several alterna-
tive patterning techniques for defining nanoscale geometry
on an optical fiber such as nano-imprint lithography [31]
and Nanosphere Lithography (NSL) [32]. The nanoimprint
lithography involves creating a nanostructure template that
can be transferred into the substrate using a transparent curing
adhesion layer along with applied pressure. The nanoimprint
techniques have some drawbacks such as nanoscale mask
misalignment due to the small area of the fiber core [19] in
addition to the complexity and high cost of implementation.
NSL uses a self-assembled layer of nano or micro spheres on
the substrate to create periodic nano structures. The assem-
bled nanospheres is followed by etching and/or material
deposition. This approach has been used to create nanostars
or nanoholes structures [32]. NSL can create some different
structures by extra pre-treatment. However, the number of
these structures are limited due to the nature of NSL tech-
nique. Meanwhile, Microsphere Photolithography (MPL) is
very versatile in creating complicated resonators (e.g. SRRs
or dipole structures). Basically, microspheres inMPLmethod
work as a ball lens array that images incident collimated UV
radiation to a sub-diffraction limited photonic jet. In addition,
there is a possibility that the microspheres can be recycled as
opposed to being consumed as a shadow/etch mask.

This article reports on the use of Microsphere Photolithog-
raphy (MPL) for the patterning RI sensor on the fiber
tip. Microsphere photolithography is capable of fabricating
structures featured with highly ordered periodic structures
in 2D [33]–[36]. The self-assembled microsphere array is
used as an optical element and focuses UV flood illumina-
tion to sub-diffraction limited photonic nanojets within the
photoresist. This near-field permits the facile patterning of
sub-200 nm features. Combined with positive/negative tone
photoresist and etching/lift-off technique, this method was
capable of fabricating nanopillar/hole array that meets the
requirement of the refractive index sensor. Compared to NSL,

the MPL utilizes microsphere as an optical element instead
of using Physical Vapor Deposition (PVD) or etching masks,
offers a wide versatility for fabrication by creating different
nanoholes and nanodisks structure through controlling the
incident UV illumination [37]. Both MPL and NSL methods
may suffer from making a SAM (Self-Assembly Monolayer)
a single crystal for a large surface area on a glass substrate.
One drawback of the MPL is the need to deposit a uniform
thin layer of photoresist over small sized substrates such as
the fiber tip. With MPL (as well as NSL) the self-assembly
of the microspheres can result in the grain boundaries in
HCP lattice. Disruptions in the lattice have the potential to
disrupt the long-range order of the pattern and frustrate PSPR
modes. This is less of an issue for the fiber tip platform
because of the small surface area. Studies on MPL process
have been presented in various papers [33], [34], [38]–[42],
The contribution of this article is, implementingMPL on fiber
tips.

This article presents a procedure for fabricating a nanohole
array on aluminum film of the optical fiber tip using micro-
sphere photolithography. The MPL technique allows the size
of the holes to be controlled by adjusting the exposure dose
and this relationship is characterized experimentally. This
allows the resonant wavelength of the sensor to be engi-
neered. Electromagnetic modeling is used to understand the
effects of the geometrical parameters on the sensor perfor-
mance. These results predict that the sensitivity is maximized
for a coupled waveguide mode in the holes. Experimental
results are in good agreement with the simulation and provide
a measured sensitivity of 613 nm/RIU for glucose dissolved
in water. Overall, the results show that MPL has the potential
for a practical, low-cost fabrication approach for RI sensors.

II. MICROSPHERE PHOTOLITHOGRAPHY PATTERNING
PROCESS
Single-mode fiber (Corning SMF-28) with an 8.2 µm diam-
eter core and 125 µm cladding are used throughout this
work. A layer of aluminum was deposited with a thickness
of 50 nm, using an E-beam evaporator, on the fiber/ferrule
after polishing (successively polishing using 5 µm, 3 µm,
1 µm, 0.3 µm carbide polishing paper to reduce the surface
roughness)/cleaning (before spin-coating). After polishing,
each fiber was carefully inspected with microscope to make
sure the surface is clean and smooth. Coating a uniform layer
of photoresist on the small surface area of the fiber end-facet
can be challenging in a laboratory prototyping environment
using spin coating. Surface tension leads to an edge bead
with a non-uniform photoresist thickness. This is overcome
by shifting the edge further away from the core by securing
the fiber in a ceramic ferrule with a 125 µm inner diameter.
The jacket is first removed from the first 1.5 cm of a 10 cm
long of the fiber. The stripped end is positioned in the ferrule,
so the cleaved face is even with the face of the ferrule. A small
amount of glue is used to secure the fiber and cured by
baking for 10 minutes at 100 ◦C on a hot plate. The tip of the
ferrule/fiber is then polished and cleaned to provide a clean
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and smooth fiber end surface. The ferrule is then placed in
a small 3D printed chuck, which allows the assembly to be
secured on a spin coater. Shipley 1805 photoresist is then spun
onto the polished tip/ferrule to provide a photoresist layer
with a thickness of 400 nm (The surface tension due to small
area of the fiber tip caused this number to be different from
the data provided by manufacturer). After spin coating, the
ferrule is removed from the chuck and placed on a fixture
which is submerged in a water-filled beaker.

Dry silicamicrospheres (SigmaAldrich) with a diameter of
p = 1µmand a coefficient of variance of less than 3% are dis-
persed in butanol to a concentration of 1 mg/mL with 5 mg of
surfactant (Sodium lauryl sulfate). Ultrasonication is used to
ensure that the microsphere/butanol suspension is monodis-
perse. One drop (2 µL) of the microsphere suspension is
dispensed onto the surface of the water-filled beaker by a
syringe. The ratio of the microsphere suspension to the water
surface area is 0.25 µL/cm2 which is less than maximum
concentration if the entire surface was covered with a mono-
layer of microspheres (0.25 µL/cm2). Capillary forces cause
the microspheres to rapidly self-assemble on a close-packed
lattice on the surface of the water. Sphere self-assemble is a
natural process. We cannot control the sphere orientation and
number of defects during self-assembly process. However,
the defect we observed on the fiber tip were minimum. This
is due to the small surface area of the fiber tip. We have
tested many fibers with identical feature. All these fibers
showed similar performance with a minimum change of the
signal peak. In addition, the simulation shows that the ori-
entation doesn’t have an effect on the performance as well.
Following the self-assembly of the microsphere array, water
is withdrawn slowly from the beaker by a faucet located at
the bottom of the beaker. Eventually, the surface of the water
impinges on the submerged fiber surface, and the micro-
sphere lattice is transferred on the photoresist covered fiber
surface [42].

After transferring the microsphere array, the fiber/ferrule
is removed from the water and the assembly is dried at room
temperature. The sample is then exposed by flood illumi-
nating with the microspheres at normal incidence using an
MA6 mask-aligner. This provides spatially uniform, colli-
mated UV radiation at λ = 365 nm (i-line) with an irradiance
is 7 mW/cm2. Each microsphere generates a photonic jet in
the photoresist. After exposure, the fiber/ferrule is placed in
developer (MF 319) for 60 s (400 nm photoresist thickness).
The microspheres are removed in the developer.

The developed photoresist can be used as a mask for metal
etching (deposited on the fiber/ferrule prior to spin-coating
the photoresist), or as a sacrificial layer for lift-off process.
Figure 1 illustrates theMPL fabrication approach used for the
sensors in this article. After theMPL process, the fiber/ferrule
is immersed in the aluminum etchant for 30 s. The etchant
removes the exposed aluminum to open holes in the alu-
minum layer. After etching, the photoresist is removed using
acetone. The reason we used aluminum is because it is less
expensive, and we selected it on the basis of creating low-cost

FIGURE 1. Schematic of hole pattern on fiber tip: the upper part shows
the microsphere assembled on the fiber tip before exposure, (photoresist
layer was ignored in the schematic); the lower part shows the al hole
pattern after etching.

FIGURE 2. SEM Micrographs: showing the tip of optical fiber patterned
with an Al hole array (a) fiber in ferrule (b) close-up and (c) magnified
image of the individual holes.

sensors (this work being a first step to the parallel fabrication
of multiple sensors). In addition, while aluminum has slightly
greater losses in the SWIR the losses are manageable. Alu-
minum forms a native oxide that limits tarnishing similar to
gold. However, aluminum does not have interband transitions
limiting its performance at shorter wavelengths. Figure 2
shows the SEM micrographs for different hole sizes.

One advantage of MPL is that the diameter of the holes
in the photoresist can be controlled by adjusting the UV
exposure dose. Figure 3 shows this dependence for a 50 nm
thick Al film deposited and patterned on the fiber tip. The
photoresist was thinned with PGMEA and spun to a thickness
of 120 nm. MPL was performed using p = 1 µm spheres
and the photoresist was developed for 7 s (120 nm photoresist
thickness). The diameter of the holes is very sensitive to small
changes in the dose at the low exposure doses required to
create smaller holes. This sensitivity is lower for larger holes.

III. COMPUTATIONAL ANALYSIS
The frequency-domain finite-element method (Ansys Elec-
tronics Desktop) is used to model a hexagonal close-packed
(HCP) hole array defined in an aluminum film. Infinitely
periodic boundary conditions are used to model the array.
This neglects any truncation effects at defects or at the edge
of the core. The hole array is excited with a normally incident
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FIGURE 3. Schematic of hole pattern on fiber tip: the upper part shows
the microsphere assembled on the fiber tip before exposure, (photoresist
layer was ignored in the schematic); the lower part shows the al hole
pattern after etching.

FIGURE 4. (a) Reflection spectra with respect to hole diameters on 50 nm
thick Al layer for n2 = 1.3; (b) E-field distributions for three points in
(a,c-d), Reflection spectra for (c) d = 200 nm and (d) d = 600 nm holes
with varied analyte index, n2.

plane wave from the silica side of the film which represents
the low numerical aperture illumination propagating in the
single-mode optical fiber. The side that has the sensing film
is then immersed in the analyte and simulated with a range of
optical indices, n2. Figure 4a shows the simulated reflection
spectra for different hole diameter (d), on 50 nm thick (t) Al
film in a HCP pitch (p = 1 µm). Different modes are evident
for n2 = 1.3 (water). Figure 4b shows the field distribution
the three instances labeled (i)-(iii) in Figure. 4a. Figure 4c
shows diffractive/LRSP modes are bound to the Al/analyte
interface at λ = 1.14 µm (i) and to the SiO2/Al interface
at λ = 1.22 µm (ii), for the d = 200 nm holes. As n2
increases, the LSPR mode bound to the Al/analyte interface
(i) occurs at longer wavelengths, while the one at the SiO2/Al
interface (ii) does not change significantly which agrees with
Fig. 4b, showing minimal field penetration into the analyte
for this condition (ii). A Rabi-splitting type anti-crossing can

FIGURE 5. (a) Sensitivity S with respect to different d and t within the RI
range from 1.3 to 1.4. (b) FOM with respect to different diameters d and t
within the RI range from 1.3 to 1.4.

be observed as n2 of analyte approaches the refractive index
of SiO2 at n2 = 1.44. The sensitivity of the bound Al/analyte
mode is high; 954 nm/RIU at n2 = 1.33, however, the cou-
pling is low, and the resonant wavelength is determined by
the periodicity (the diameter of the microspheres) as opposed
to the geometry.

Figure 4a shows that the SiO2/Al interface bound mode
(ii) couples to a waveguide mode in the holes (iii) with the
resonant wavelength scalingwith the hole diameter. Figure 4d
shows how the reflection spectra evolves with changing the
analyte index of refraction. The sensitivity of this mode is
601 nm/RIU. The resonance occurs near the cutoff wave-
length for the TE11 mode in the circular waveguide (λc =
1.71·d ·n) but the sensitivity is lower than would be expected
(dλc/dn = 1020 nm/RIU) as a result of the influence of cou-
pling and the fact that much the field distribution at resonance
lies in the SiO2.
The thickness of the aluminum film, t, also influences the

sensitivity. In general, thicker films correspond to a greater
sensitivity. This is illustrated in Figure 5. The FOM also
increases with film thickness as the response becomes more
dependent on coupling to the analyte filled waveguide at
cutoff. However, since Al wet etching is isotropic. Etching
a thicker layer would result in tapored hole which would
remove some of the benefits shown in simulation. In the
future, we will develop procedures for thicker Al layers and
modify the simulation results to accommodate tapored side-
walls.

IV. REFRACTIVE INDEX MEASUREMENT
The experimental setup that was used to test the device is
illustrated in Figure 6. A four LED wide band light source
(Agilent 83437A) with a spectral range (1250 nm - 1650 nm
limited by the equipment) is coupled through a single-mode
optic coupler to the patterned fiber tip. Reflected light from
the fiber tip is reflected back through the bifurcated cable
and is collected by anOptical SpectrumAnalyzer (AQ6317B)
(OSA). The spectral shift measured by the OSA corresponds
to the change of the refractive index of the light through
the medium where the sensor is placed. The pattern on fiber
tip is the small holes in a thin deposited aluminum layer as
previously described.

32630 VOLUME 9, 2021



I. Jasim et al.: MPL Patterned Nanohole Array on an Optical Fiber

FIGURE 6. Testing Setup of the Biochemical Sensor: the setup has a light
source, bifurcated single-mode fiber cable, our sensor, and a light
spectrum analyzer.

FIGURE 7. Testing Result: Reflection spectra that recorded in water and
different concentrations of glucose in water.

Losses can occur during the measurement because of slight
differences in the hole diameters or spacing though SEM
images show that these differences are minimal. Other losses
may come from coupling the fiber sensor to the interrogation
setup (broadband source and OSA). The biggest apparent
losses (larger quality factor) are that the sensors targeted a
waveguide based resonant mode in the sensor as opposed
to the plasmonic/diffractive mode commonly exploited in
sensors.

Fig. 7 shows the measured reflection spectra measured
from a sensor with d = 600 nm holes defined in a t = 50 nm
film when the fiber tip is immersed in different glucose/water
concentrations. The measured resonance occurs at λ0 =
1.62 µm for distilled water and is red shifted as the glucose
concentration increases.

The refractive index was calculated according to the linear
relationship between glucose concentration and refractive
index [43]. Figure 8 shows the shift in resonant wavelength
with respect to the calculated refractive index of glucose
solution. The resonant wavelength shifted 1λ = 48 nm
as refractive index changed from 1.3328 to 1.4101. Higher

FIGURE 8. Comparison of Sensitivity from Experiment and Simulation:
hole size d = 600 nm and metal thickness t = 50 nm. Inserted show the
linear fit of the testing result from 0 to 200 mg/ml glucose concentration.
The slope of the linear fit is 613 nm/RIU which represent the testing
sensitivity of the sensor.

glucose concentrations were tested but they are not pre-
sented because high concentrations would cause the low
concentrations to be suppressed in the figure. A sensitivity
of 613 nm/RIU is measured from a linear fit of the exper-
imental data (Figure 8 insert). This agrees with simulated
results S = 632 nm/RIU. While the sensitivity is compet-
itive, the simulations predict that greater sensitivity could
be achieved using the bound propagating mode within the
measurement range. The good agreement between the sim-
ulated results for an infinite array of holes, illustrate the
robustness of the waveguidemode-based sensor including the
insensitivity to any truncation effects resulting from the finite
number of holes are illuminated by the core of the fiber as
well as any defects in the self-assembly.

Stability has been verified by repeatingmeasuring the same
fiber for many times. The result shows the sensor is very
stable and consistent during testing in various experiments.
Future workwill study the repeatability of the fabrication pro-
cess. Previous studies of MPL have shown good consistency
over much greater areas. While there are slight variations in
any university laboratory process, initial fabrication runs have
shown reasonable repeatability.

V. CONCLUSION
This work demonstrated the use of Microsphere Photolithog-
raphy to create a simple refractive index sensor. A waveguide
mode resonator pattern on the end-facet of an optical fiber
is sensitive to changes in the glucose concentration. The
principal appeal of this approach is that it can be scaled
to simultaneously pattern multiple fibers in parallel with
minimal variability. The approach can be readily tuned to
produce different spectra by adjusting the resonator patterns.
This is achievable by adjusting the exposure dose and angle of
incidence of the illumination. The periodicity of the resonator
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is dependent on themicrosphere diameter and thus can also be
easily adjusted. Future work will be improving the sensitivity
and FOM of the resonators by exploiting bound diffrac-
tive modes as well as creating resonators with high local
field concentrations at specific wavelengths for non-linear
spectroscopy techniques such as Surface Enhanced Raman
Spectroscopy (SERS).
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