47 research outputs found
Biochar immobilizes soil-borne arsenic but not cationic metals in the presence of low-molecular-weight organic acids
A batch experiment was conducted to examine the effects of biochar on the behaviour of soil-borne arsenic and metals that were mobilized by three low-molecular-weight organic acids. In the presence of citric acid, oxalic acid and malic acid at a molar concentration of 0.01 M, the surface of biochar was protonated, which disfavours adsorption of the cationic metals released from the soil by organic acid-driven mobilization. In contrast, the oxyanionic As species were re-immobilized by the protonated biochar effectively. Biochar could also immobilize oxyanionic Cr species but not cationic Cr species. The addition of biochar increased the level of metals in the solution due to the release of the biochar-borne metals under attack by LMWOAs via cation exchange. Biochar could also have the potential to enhance reductive dissolution of iron and manganese oxides in the soil, leading to enhanced release of trace elements bound to these oxides. The findings obtained from this study have implications for evaluating the role of biochar in immobilizing trace elements in rhizosphere. Adsorption of cationic heavy metals on biochar in the presence of LMWOAs is unlikely to be a mechanism responsible for the impeded uptake of heavy metals by plants growing in heavy metal-contaminated soils
Response of Soil Microorganisms, Nitrogenase Activity and Growth of Onion Plants to the Interaction between Glomus mosseae and Azotobacter chroococcumre
A greenhouse nursery study was conducted to assess the interactive effects of arbuscular mycorrhizal (AM) fungus (Glomus mosseae) and nitrogen-fixing bacteria (Azotobacter chroococcum) on leading microorganisms group, growth, and nutrition of onion plants grown in unsterile calcareous soil in a greenhouse pot experiment. The results showed that Glomus mosseae and Azotobacter chroococcum significantly (P=0.05) increased bacterial, actinomycetes, Azotobacter count, and nitrogenase activity in onion rhizosphere. Moreover, coupling both organisms significantly increased sporulation and mycorrhizal infection of onion plant roots. Dry weight, nitrogen, and phosphorus uptake of shoots of dually inoculated plants were far higher than of shoots of plants inoculated with either microorganisms. It could conclude that microbial soil co-inoculation Glomus mosseae and Azotobacter chroococcum significantly enhance plant growth, N and P uptake of onion, and the strategy may be applied to obtain better crop productivity
Adaptive Responses of Four Medicinal Plants to High Altitude Oxidative Stresses through the Regulation of Antioxidants and Secondary Metabolites
The conservation of medicinal plants, particularly endangered or endemic species, is of the utmost importance, especially in light of inevitable climate change and its consequences. Species inhabiting high altitudes adopt exceptional defense mechanisms in response to abiotic stresses as a survival strategy. The objective of the current study was to investigate the effects of altitudinal variations on secondary metabolite accumulation and antioxidant enzyme capacity in four plants (Cotoneaster orbicularis, Crataegus x sinaica, Echinops spinosissimus subsp. Spinosissimus, and Tanacetum sinaicum) growing naturally on the Sinai Peninsula’s high mountains. Plant leaves and soil samples were collected from three altitudes between 1500 and 2250 m a.s.l. to evaluate the adaptive responses of these species in relation to high-altitude oxidative stresses. The results showed that at higher altitudes, the electrical conductivity and the micronutrient contents of the soil decreased, which may be due to the prevalence of silt and clay decreasing at higher altitudes. Chlorophyll a, chlorophyll b, ascorbic acid, and total soluble protein showed similar results in relation to higher altitudes for all species. On the other hand, proline, total soluble sugars, carotenoids, phenols, tannins, and flavonoids increased in response to high altitudes. The activity levels of catalase and ascorbic acid peroxidase showed a significant increase aligned with higher altitudes, while a significant decrease in activity levels was obtained for polyphenol oxidase. In conclusion, the present findings showed that Cotoneaster orbicularis exhibited the maximum response for coping with high-altitude stresses, followed by the remaining three species regarding the level of biochemical and physiological responses. The present work will help formulate conservation plans for important medicinal species
Effects of carbon nanotube and biochar on bioavailability of Pb, Cu and Sb in multi-metal contaminated soil
This study examined the effects of carbon nanotube and biochar on the bioavailability of Pb, Cu and Sb in the shooting range soils for developing low-cost remediation technology. Commercially available multi-walled carbon nanotube (MWCNT) and biochar pyrolyzed from soybean stover at 300 A degrees C (BC) at 0.5, 1 and 2.5% (w w(-1)) were used to remediate the contaminated soil in an incubation experiment. Both DTPA (bioavailable) and TCLP (leaching) extraction procedures were used to compare the metal/loid availability and leaching by the amendments in soil. The addition of BC was more effective in immobilizing mobile Pb and Cu in the soil than that in MWCNT. The BC reduced the concentrations of Pb and Cu in the soil by 17.6 and 16.2%, respectively. However, both MWCNTs and BC increased Sb bioavailability by 1.4-fold and 1.6-fold, respectively, in DTPA extraction, compared to the control. The toxicity characteristic leaching procedure (TCLP) test showed that the leachability of Pb in the soil amended with 2.5% MWCNT was 1.3-fold higher than that the unamended soil, whereas the BC at 2.5% decreased the TCLP-extractable Pb by 19.2%. Precipitation and adsorption via electrostatic and pi-pi electron donor-acceptor interactions were postulated to be involved in the interactions of Pb and Cu with surfaces of the BC in the amended soils, whereas ion exchange mechanisms might be involved in the immobilization of Cu in the MWCNT-amended soils. The application of BC derived from soybean stover can be a low-cost technology for simultaneously immobilizing bioavailable Pb and Cu in the shooting range soils; however, neither of amendments was effective in Sb immobilization